Current climate change projections anticipate that global warming trends will lead to changes in the distribution and intensity of precipitation at a global level. However, few studies have corroborated these model-based results using historical precipitation records at a regional level, especially in our study region, California. In our analyses of 14 long-term precipitation records representing multiple climates throughout the state, we find northern and central regions increasing in precipitation while southern regions are drying. Winter precipitation is increasing in all regions, while other seasons show mixed results. Rain intensity has not changed since the 1920s. While Sacramento shows over 3 more days of rain per year, Los Angeles has almost 4 less days per year in the last century. Both the El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) greatly influence the California precipitation record. The climate change signal in the precipitation records remains unclear as annual variability overwhelms the precipitation trends.
OPEN ACCESSClimate 2014, 2 169
1. Warming and water isotope variations inferred from clumped isotopes are qualitatively similar to transient climate model simulations 2. Amount of warming was about three times the global average and is likely due to the proximity of site to ice margin during OIS 3 and LGM 3. Model analysis indicates 18 O depletion in this location at the LGM is largely a result of the North
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.