Currently, the best detectors of content-adaptive steganography are built as classifiers trained on examples of cover and stego images represented with rich media models (features) formed by histograms (or co-occurrences) of quantized noise residuals. Recently, it has been shown that adaptive steganography can be more accurately detected by incorporating content adaptivity within the features by accumulating the embedding change probabilities (change rates) in the histograms. However, because each noise residual depends on an entire pixel neighborhood, one should accumulate the embedding impact on the residual rather than the pixel to which the residual is formally attributed. Following this observation, in this paper we propose the expected value of the residual L 1 distortion as the quantity that should be accumulated in the selectionchannel-aware version of rich models to improve the detection accuracy. This claim is substantiated experimentally on four modern content-adaptive steganographic algorithms that embed in the spatial domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.