The major glycoproteins of bovine gammaherpesvirus 4 (BoHV-4) are gB, gH, gM, gL, and gp180 with gB, gH, and gp180 being the most glycosylated. These glycoproteins participate in cell binding while some act as neutralization targets. Glycosylation of these envelope proteins may be involved in virion protection against neutralization by antibodies. In infected cattle, BoHV-4 induces an immune response characterized by low neutralizing antibody levels or an absence of such antibodies. Therefore, virus seroneutralization in vitro cannot always be easily demonstrated. The aim of this study was to evaluate the neutralizing capacity of 2 Argentine BoHV-4 strains and to associate those findings with the gene expression profiles of the major envelope glycoproteins. Expression of genes coding for the envelope glycoproteins occurred earlier in cells infected with isolate 10/154 than in cells infected with strain 07/435, demonstrating a distinct difference between the strains. Differences in serological response can be attributed to differences in the expression of antigenic proteins or to post-translational modifications that mask neutralizing epitopes. Strain 07/435 induced significantly high titers of neutralizing antibodies in several animal species in addition to bovines. The most relevant serological differences were observed in adult animals. This is the first comprehensive analysis of the expression kinetics of genes coding for BoHV-4 glycoproteins in 2 Argentine strains (genotypes 1 and 2). The results further elucidate the BoHV-4 life cycle and may also help determine the genetic variability of the strains circulating in Argentina.
Bovine herpevsirus 4 (BoHV-4) is a gammaherpesvirus that has been associated with different clinical conditions in cattle. In Argentina, BoHV-4 was detected in diverse bovine samples. The aim of this study was to analyze the genetic relationship of 48 field BoHV-4 strains isolated from cattle in Argentina. According to thymidine kinase (tk) gene sequences, BoHV-4 isolates belong to genotypes 1, 2 and 3. Phylogenetic analyses confirmed the presence of the three previously described viral genotypes. However, some of the studied isolates presented conflicting phylogenetic signals between the studied markers. This suggests a complex evolutionary background, that is a history of recombination, incomplete lineage sorting (deep coalescence) or a combination of these, which requires further study. These potential events make difficult the diagnosis of BoHV-4 from clinical samples of cattle and may pose a significant problem for the control of the virus in the herds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.