Although current estimates depict steady growth in Internet of Things (IoT), many works portray an as yet immature technology in terms of security. Attacks using low performance devices, the application of new technologies and data analysis to infer private data, lack of development in some aspects of security offer a wide field for improvement. The advent of Semantic Technologies for IoT offers a new set of possibilities and challenges, like data markets, aggregators, processors and search engines, which rise the need for security. New regulations, such as GDPR, also call for novel approaches on data-security, covering personal data. In this work, we present DS4IoT, a data-security ontology for IoT, which covers the representation of data-security concepts with the novel approach of doing so from the perspective of data and introducing some new concepts such as regulations, certifications and provenance, to classical concepts such as access control methods and authentication mechanisms. In the process we followed ontological methodologies, as well as semantic web best practices, resulting in an ontology to serve as a common vocabulary for data annotation that not only distinguishes itself from previous works by its bottom-up approach, but covers new, current and interesting concepts of data-security, favouring implicit over explicit knowledge representation. Finally, this work is validated by proof of concept, by mapping the DS4IoT ontology to the NGSI-LD data model, in the frame of the IoTCrawler EU project.
Due to the rapid development of the Internet of Things (IoT) and consequently, the availability of more and more IoT data sources, mechanisms for searching and integrating IoT data sources become essential to leverage all relevant data for improving processes and services. This paper presents the IoT search framework IoTCrawler. The IoTCrawler framework is not only another IoT framework, it is a system of systems which connects existing solutions to offer interoperability and to overcome data fragmentation. In addition to its domain-independent design, IoTCrawler features a layered approach, offering solutions for crawling, indexing and searching IoT data sources, while ensuring privacy and security, adaptivity and reliability. The concept is proven by addressing a list of requirements defined for searching the IoT and an extensive evaluation. In addition, real world use cases showcase the applicability of the framework and provide examples of how it can be instantiated for new scenarios.
The high number of IoT devices, and also their availability through the Internet, has made the topic of IoT virtualisation an emerging topic, which has gained a lot of interest from both academia and industry points of view. Fed4IoT is an H2020 EU-JPN Research Project, whose aim is precisely this one. Nevertheless, security, and more specifically authorisation or access control is a fundamental aspect that must be addressed, motivated by the increase of threats and attacks that the IoT domain has suffered. In this paper we propose the use of a distributed authorisation mechanism based on DCapBAC technology, to specifically deal with the IoT virtualisation aspect, in the scope of this project. This technology has proven its validity in the IoT domain because of its distributed nature and the flexibility of their authorisation policies. CCS CONCEPTS • Security and privacy → Domain-specific security and privacy architectures.
As prices on renewable energy electricity generation and storage technologies decrease, previous standard home energy end-users are also becoming producers (prosumers). Together with the increase of Smart Home automation and the need to manage the energy-related interaction between home energy consumers and Smart Grid through different Demand Response approaches, home energy management becomes a complex and multi-faceted problem, calling for an extensible, interoperable and secure solution. This work proposes a modular architecture for building a Smart Home Energy Management System, integrable with existing Home Automation Systems, that considers the use of standard interfaces for data communication, the implementation of security measures for the integration of the different components, as well as the use of semantic web technologies to integrate knowledge and build on it. Our proposal is finally validated through implementation in one real smart home test-bed, evaluating the system from a functional standpoint to demonstrate its ability to support our goals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.