According to the results achieved by CNN, we demonstrate the feasibility of using convolutional neural networks on medical image processing techniques for classification of breast tissue and mass detection.
Background and Objective: One of the main steps in the planning of radiotherapy (RT) is the segmentation of organs at risk (OARs) in Computed Tomography (CT). The esophagus is one of the most difficult OARs to segment.The boundaries between the esophagus and other surrounding tissues are not well-defined, and it is presented in several slices of the CT. Thus, manually segment the esophagus requires a lot of experience and takes time. This difficulty in manual segmentation combined with fatigue due to the number of slices to segment can cause human errors. To address these challenges, computational solutions for analyzing medical images and proposing automated segmentation have been developed and explored in recent years. In this work, we propose a fully automatic method for esophagus segmentation for better planning of radiotherapy in CT. Methods: The proposed method is a fully automated segmentation of the esophagus, consisting of 5 main steps: (a) image acquisition; (b) VOI segmentation; (c) preprocessing; (d) esophagus segmentation; and (e) segmentation refinement. Results: The method was applied in a database of 36 CT acquired from 3 different institutes. It achieved the best results in literature so far: Dice
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.