Human African Trypanosomiasis (HAT), a disease that provokes 2184 new cases a year in Sub-Saharan Africa, is caused by Trypanosoma brucei. Current treatments are limited, highly toxic, and parasite strains resistant to them are emerging. Therefore, there is an urgency to find new drugs against HAT. In this context, T. brucei depends on glycolysis as the unique source for ATP supply; therefore, the enzyme triosephosphate isomerase (TIM) is an attractive target for drug design. In the present work, three new benzimidazole derivatives were found as TbTIM inactivators (compounds 1, 2 and 3) with an I50 value of 84, 82 and 73 µM, respectively. Kinetic analyses indicated that the three molecules were selective when tested against human TIM (HsTIM) activity. Additionally, to study their binding mode in TbTIM, we performed a 100 ns molecular dynamics simulation of TbTIM-inactivator complexes. Simulations showed that the binding of compounds disturbs the structure of the protein, affecting the conformations of important domains such as loop 6 and loop 8. In addition, the physicochemical and drug-like parameters showed by the three compounds suggest a good oral absorption. In conclusion, these molecules will serve as a guide to design more potent inactivators that could be used to obtain new drugs against HAT.
A copper-catalyzed oxidative cleavage of electron-rich olefins into their corresponding carbonyl derivatives is described as an alternative to ozonolysis. The scope includes various precursors to aryl ketone derivatives, as well as oxidations of enol ethers bearing atypical alkyl and dialkyl substitution, the first of their kind among such metal catalyzed alkene cleavage reactions. The use of an inexpensive copper salt, room temperature conditions, an aerobic atmosphere, and water as the global reaction medium highlight the green features of this new method. Associated mechanistic investigations are also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.