The dynamic mechanical properties of lung tissue and its contents of collagen and elastic fibers were studied in strips prepared from mice instilled intratracheally with saline (C) or silica [15 (S15) and 30 days (S30) after instillation]. Resistance, elastance, and hysteresivity were studied during oscillations at different frequencies on S15 and S30. Elastance increased from C to silica groups but was similar between S15 and S30. Resistance was augmented from C to S15 and S30 and was greater in S30 than in S15 at higher frequencies. Hysteresivity was higher in S30 than in C and S15. Silica groups presented a greater amount of collagen than did C. Elastic fiber content increased progressively along time. This increment was related to the higher amount of oxytalan fibers at 15 and 30 days, whereas elaunin and fully developed elastic fibers were augmented only at 30 days. Silicosis led not only to pulmonary fibrosis but also to fibroelastosis, thus assigning a major role to the elastic system in the silicotic lung.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.