Background
Current dietary recommendations are often generalized, conflicting, and highly subjective, depending on the source biases. This results in confusion, skepticism, and frustration in the general population.
Methods
We have developed an objective, integrated, automated, algorithmic approach to diet and supplement recommendations that is powered by artificial intelligence that analyzes individualized molecular data from the gut microbiome, the human host, and their interactions. This platform enables precise, personalized, and data-driven nutritional recommendations that consist of foods and supplements, based on the individual molecular data, to establish and maintain healthy homeostasis.
Results
We describe the application of our precision nutrition technology platform to populations with depression, anxiety, irritable bowel syndrome (IBS), and type 2 diabetes (T2D). In a blinded interventional study, we provided the study participants with precision nutritional recommendations and observed improvements in clinical outcomes by 36% in severe cases of depression, 40% in severe cases of anxiety, 38% in severe cases of IBS, and more than 30% in the T2D risk score that was validated against clinical measurements of HbA1c.
Conclusion
Our AI-driven precision nutrition program achieved statistically significant improvements in clinical outcomes of depression, anxiety, IBS, and type 2 diabetes. These data support the integration of precision food and supplements into the standard of care for these chronic conditions.
This paper presents a comparative analysis on two artificial neural networks (with different architectures) for the task of tempo estimation. For this purpose, it also proposes the modeling, training and evaluation of a B-RNN (Bidirectional Recurrent Neural Network) model capable of estimating tempo in bpm (beats per minutes) of musical pieces, without using external auxiliary modules. An extensive database (12,333 pieces in total) was curated to conduct a quantitative and qualitative analysis over the experiment. Percussion-only tracks were also included inthe dataset. The performance of the B-RNN is compared to that of state-of-the-art models. For further comparison, a state-of-the-art CNN was also retrained with the same datasets used for the B-RNN training. Evaluation results for each model and datasets are presented and discussed, as well as observations and ideas for future research. Tempo estimation was more accurate for the percussion-only dataset, suggesting that the estimation can be more accurate for percussion-only tracks, although further experiments (with more of such datasets) should be made to gather stronger evidence.
A baixa disponibilidade de acesso rápido e compreensível à justiça pelos cidadãos é um problema global e a Organização das Nações Unidas (ONU) tem buscado meios para a democratização da justiça. No Brasil, o projeto Justiça 4.0 busca dar os primeiros passos rumo a um sistema judiciário inteligente, eficiente e digital. Este trabalho aborda então um dos problemas mais recorrentes de violência no brasil: a violência doméstica. Dessa maneira, foi desenvolvida uma aplicação com tecnologias web e de computação em nuvem, orientada para a gestão de denúncias e julgamentos, pelas autoridades competentes, de solicitações de medidas protetivas de urgência. Uma avaliação experimental com voluntários da área jurídica foi realizada e analisada.
No âmbito da mobilidade urbana, a obtenção de informação de forma rápida e localizada para tomada de decisão e um dos principais desafios atuais. Nesse contexto, redes sociais podem funcionar como uma das fontes de extração de conhecimento para diversas tarefas, dentre as quais controle de trânsito. Contudo, tais dados precisam ser bem classificados para garantir que somente informações relevantes sejam utilizadas. Particularmente em países lusófonos, não há muitos estudos sobre tal classificação, em especial explorando o potencial das redes neurais. Assim, este trabalho propõe um modelo de representação e classificação de microtexto para a língua portuguesa através de técnicas modernas de deep learning, com o objetivo de gerar informações de trânsito. Para tal, são analisados os resultados da combinação de diversas arquiteturas de deep learning para representação e classificação, levando a resultados de acurácia e precisão acima de 95%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.