Regeneration of skeletal muscle depends on a population of adult stem cells (satellite cells) that remain quiescent throughout life. Satellite cell regenerative functions decline with ageing. Here we report that geriatric satellite cells are incapable of maintaining their normal quiescent state in muscle homeostatic conditions, and that this irreversibly affects their intrinsic regenerative and self-renewal capacities. In geriatric mice, resting satellite cells lose reversible quiescence by switching to an irreversible pre-senescence state, caused by derepression of p16(INK4a) (also called Cdkn2a). On injury, these cells fail to activate and expand, undergoing accelerated entry into a full senescence state (geroconversion), even in a youthful environment. p16(INK4a) silencing in geriatric satellite cells restores quiescence and muscle regenerative functions. Our results demonstrate that maintenance of quiescence in adult life depends on the active repression of senescence pathways. As p16(INK4a) is dysregulated in human geriatric satellite cells, these findings provide the basis for stem-cell rejuvenation in sarcopenic muscles.
The p38 mitogen-activated protein kinase (MAPK) pathway plays a critical role in skeletal muscle differentiation. However, the relative contribution of the four p38 MAPKs (p38a, p38b, p38c and p38d) to this process is unknown. Here we show that myoblasts lacking p38a, but not those lacking p38b or p38d, are unable to differentiate and form multinucleated myotubes, whereas p38c-deficient myoblasts exhibit an attenuated fusion capacity. The defective myogenesis in the absence of p38a is caused by delayed cell-cycle exit and continuous proliferation in differentiation-promoting conditions. Indeed, activation of JNK/cJun was enhanced in p38a-deficient myoblasts leading to increased cyclin D1 transcription, whereas inhibition of JNK activity rescued the proliferation phenotype. Thus, p38a controls myogenesis by antagonizing the activation of the JNK proliferation-promoting pathway, before its direct effect on muscle differentiation-specific gene transcription. More importantly, in agreement with the defective myogenesis of cultured p38a D/D myoblasts, neonatal muscle deficient in p38a shows cellular hyperproliferation and delayed maturation. This study provides novel evidence of a fundamental role of p38a in muscle formation in vitro and in vivo.
MKP-1 limits p38 MAPK signaling in macrophages to promote the resolution of the inflammatory response and tissue repair in muscle through an AKT-dependent mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.