Nucleic acid amplification technologies (NAATs) have become fundamental tools in molecular diagnostics, due to their ability to detect small amounts of target molecules. Since its development, Polymerase Chain Reaction (PCR) has been the most exploited method, being stablished as the “gold standard” technique for DNA amplification. However, the requirement for different working temperatures leads to the need of a thermocycler machine or complex thermal apparatus, which have been preventing its application in novel integrated devices for single workflow and high throughput analysis. Conversely, isothermal amplification methods have been gaining attention, especially for point-of-care diagnosis and applications. These non-PCR based methods have been developed by mimicking the in vivo amplification mechanisms, while performing the amplification with high sensitivity, selectivity and allowing for high-throughput analysis. These favorable capabilities have pushed forward the implementation and commercialization of several platforms that exploit isothermal amplification methods, mostly against virus, bacteria and other pathogens in water, food, environmental and clinical samples. Nevertheless, the future of isothermal amplification methods is still dependent on achieving technical maturity and broader commercialization of enzymes and reagents.
Under laser radiation, cells labeled with gold nanoparticles (AuNPs) are believed to suffer thermal damage due to the transfer of the absorbed light from the AuNPs to the cells. This process, which involves complex mechanisms such as the rapid electron–phonon decay in the AuNPs , followed by phonon–phonon relaxation, culminates in the localized heating of both the AuNPs and the cells, setting the rational for the use of these nanostructures, under laser light, in cancer photothermal therapy (PTT). Here, we discuss the chemical and biological aspects of this promising new therapeutic approach, including the advantages over conventional cancer therapies and the challenges that scientists still need to overcome to progress toward translation research.
The pyogenic streptococci group includes pathogenic species for humans and other animals and has been associated with enduring morbidity and high mortality. The main reason for the treatment failure of streptococcal infections is the increased resistance to antibiotics. In recent years, infectious diseases caused by pyogenic streptococci resistant to multiple antibiotics have been raising with a significant impact to public health and veterinary industry. The rise of antibiotic-resistant streptococci has been associated to diverse mechanisms, such as efflux pumps and modifications of the antimicrobial target. Among streptococci, antibiotic resistance emerges from previously sensitive populations as result of horizontal gene transfer or chromosomal point mutations due to excessive use of antimicrobials. Streptococci strains are also recognized as biofilm producers. The increased resistance of biofilms to antibiotics among streptococci promote persistent infection, which comprise circa 80% of microbial infections in humans. Therefore, to overcome drug resistance, new strategies, including new antibacterial and antibiofilm agents, have been studied. Interestingly, the use of systems based on nanoparticles have been applied to tackle infection and reduce the emergence of drug resistance. Herein, we present a synopsis of mechanisms associated to drug resistance in (pyogenic) streptococci and discuss some innovative strategies as alternative to conventional antibiotics, such as bacteriocins, bacteriophage, and phage lysins, and metal nanoparticles. We shall provide focused discussion on the advantages and limitations of agents considering application, efficacy and safety in the context of impact to the host and evolution of bacterial resistance.
Preterm birth is a major clinical and public health challenge, with a prevalence of 11% worldwide. It is the leading cause of death in children younger than 5 years old and represents 70% of neonatal deaths and 75% of neonatal morbidity. Despite the clinical and public health significance, this condition's etiology is still unclear, and most of the cases are spontaneous. There are several known preterm birth risk factors, including inflammatory diseases and the genetic background, although the underlying molecular mechanisms are far from understood. The present review highlights the research advances on the association between inflammatory‐related genes and the increased risk for preterm delivery. The most associated genetic variants are the TNFα rs1800629, the IL1α rs17561, and the IL1RN rs2234663. Moreover, many of the genes discussed in this review are also implicated in pathologies involving inflammatory or autoimmune systems, such as periodontal disease, bowel inflammatory disease, and autoimmune rheumatic diseases. This review presents evidence suggesting a common genetic background to preterm birth, autoimmune and inflammatory diseases susceptibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.