Fluid turbulence is characterized by strong coupling across a broad range of scales. Furthermore, besides the usual local cascades, such coupling may extend to interactions that are non-local in scale-space. As such the computational demands associated with explicitly resolving the full set of scales and their interactions, as in the Direct Numerical Simulation (DNS) of the Navier-Stokes equations, in most problems of practical interest are so high that reduced modeling of scales and interactions is required before further progress can be made. While popular reduced models are typically based on phenomenological modeling of relevant turbulent processes, recent advances in machine learning techniques have energized efforts to further improve the accuracy of such reduced models. In contrast to such efforts that seek to improve an existing turbulence model, we propose a machine learning (ML) methodology that captures, de novo, underlying turbulence phenomenology without a pre-specified model form. To illustrate the approach, we consider transient modeling of the dissipation of turbulent kinetic energy-a fundamental turbulent process that is central to a wide range of turbulence models-using a Neural ODE approach. After presenting details of the methodology, we show that this approach out-performs state-of-the-art approaches.
In this work, a data-driven methodology for modeling combustion kinetics, Learned Intelligent Tabulation (LIT), is presented. LIT aims to accelerate the tabulation of combustion mechanisms via machine learning algorithms such as Deep Neural Networks (DNNs). The high-dimensional composition space is sampled from high-fidelity simulations covering a wide range of initial conditions to train these DNNs. The input data are clustered into subspaces, while each subspace is trained with a DNN regression model targeted to a particular part of the high-dimensional composition space. This localized approach has proven to be more tractable than having a global ANN regression model, which fails to generalize across various composition spaces. The clustering is performed using an unsupervised method, Self-Organizing Map (SOM), which automatically subdivides the space. A dense network comprised of fully connected layers is considered for the regression model, while the network hyper parameters are optimized using Bayesian optimization. A nonlinear transformation of the parameters is used to improve sensitivity to minor species and enhance the prediction of ignition delay. The LIT method is employed to model the chemistry kinetics of zero-dimensional H2–O2 and CH4-air combustion. The data-driven method achieves good agreement with the benchmark method while being cheaper in terms of computational cost. LIT is naturally extensible to different combustion models such as flamelet and PDF transport models.
Past Lagrangian/Eulerian modeling has served as a poor match for the mixinglimited physics present in many sprays. Though these Lagrangian/Eulerian methods are popular for their low cost, they are ill-suited for the physics of the dense spray core and suffer from limited predictive power. A new spray model, based on mixinglimited physics, has been constructed and implemented in a multi-dimensional CFD code. The spray model assumes local thermal and inertial equilibrium, with air entrainment being limited by the conical nature of the spray. The model experiences full two-way coupling of mass, momentum, species, and energy. An advantage of this approach is the use of relatively few modeling constants. The model is validated with three different sprays representing a range of conditions in diesel and gasoline engines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.