Ultra-low energy threshold engineering for all-optical switching of magnetization in dielectric-coated Co/Gd based synthetic-ferrimagnet. Applied Physics Letters, 119(25), [252402].
Spin waves are proposed as information carriers for next-generation computing devices because of their low power consumption. Moreover, their wave-like nature allows for novel computing paradigms. Conventional methods to detect propagating spin waves are based either on electrical induction, limiting the downscaling and efficiency complicating eventual implementation, or on light scattering, where the minimum detectable spin-wave wavelength is set by the wavelength of the laser unless near-field techniques are used. In this article, we demonstrate the magneto-optical detection of spin waves beyond the diffraction limit using a metallic grating that selectively absorbs laser light. Specifically, we demonstrate the detection of propagating spin waves with a wavelength of [Formula: see text] in [Formula: see text] thick Ni[Formula: see text]Fe[Formula: see text] strips using a diffraction-limited laser spot with a diameter of [Formula: see text]. Additionally, we show that this grating is selective to the wavelength of the spin wave, providing phase-sensitive, wavevector-selective spin-wave detection in the time domain, thus providing a complementary approach to existing techniques such as Brillouin light scattering. This should open up new avenues toward the integration of the burgeoning fields of photonics and magnonics and aid in the optical detection of spin waves in the short-wavelength exchange regime for fundamental research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.