Blood vessels are important biomarkers in skin lesions both diagnostically and clinically. Detection and quantification of cutaneous blood vessels provide critical information toward lesion diagnosis and assessment. In this paper, a novel framework for detection and segmentation of cutaneous vasculature from dermoscopy images is presented and the further extracted vascular features are explored for skin cancer classification. Given a dermoscopy image, we segment vascular structures of the lesion by first decomposing the image using independent-component analysis into melanin and hemoglobin components. This eliminates the effect of pigmentation on the visibility of blood vessels. Using k-means clustering, the hemoglobin component is then clustered into normal, pigmented, and erythema regions. Shape filters are then applied to the erythema cluster at different scales. A vessel mask is generated as a result of global thresholding. The segmentation sensitivity and specificity of 90% and 86% were achieved on a set of 500 000 manually segmented pixels provided by an expert. To further demonstrate the superiority of the proposed method, based on the segmentation results, we defined and extracted vascular features toward lesion diagnosis in basal cell carcinoma (BCC). Among a dataset of 659 lesions (299 BCC and 360 non-BCC), a set of 12 vascular features are extracted from the final vessel images of the lesions and fed into a random forest classifier. When compared with a few other state-of-art methods, the proposed method achieves the best performance of 96.5% in terms of area under the curve (AUC) in differentiating BCC from benign lesions using only the extracted vascular features.
Background: Basal cell carcinoma (BCC) is the most common skin cancer, which is highly damaging in its advanced stages. Computer-aided techniques provide a feasible option for early detection of BCC. However, automated BCC detection techniques immensely rely on handcrafting high-level precise features. Such features are not only computationally complex to design but can also represent a very limited aspect of the lesion characteristics. This paper proposes an automated BCC detection technique that directly learns the features from image data, eliminating the need for handcrafted feature design. Methods:The proposed method is composed of 2 parts. First, an unsupervised feature learning framework is proposed which attempts to learn hidden characteristics of the data including vascular patterns directly from the images. This is done through the design of a sparse autoencoder (SAE). After the unsupervised learning, we treat each of the learned kernel weights of the SAE as a filter. Convolving each filter with the lesion image yields a feature map. Feature maps are condensed to reduce the dimensionality and are further integrated with patient profile information. The overall features are then fed into a softmax classifier for BCC classification. Results: On a set of 1199 BCC images, the proposed framework achieved an area under the curve of 91.1%, while the visualization of learned features confirmed meaningful clinical interpretation of the features. Conclusion: The proposed framework provides a non-invasive fast BCC detection tool that incorporates both dermoscopic lesional features and clinical patient information, without the need for complex handcrafted feature extraction. K E Y W O R D S automated basal cell carcinoma detection, blood vessels, dermoscopy, feature learning, sparse autoencoders
Vascular structures of skin are important biomarkers in diagnosis and assessment of cutaneous conditions. Presence and distribution of lesional vessels are associated with specific abnormalities. Therefore, detection and localization of cutaneous vessels provide critical information towards diagnosis and stage status of diseases. However, cutaneous vessels are highly variable in shape, size, color and architecture, which complicate the detection task. Considering the large variability of these structures, conventional vessel detection techniques lack the generalizability to detect different vessel types and require separate algorithms to be designed for each type. Furthermore, such techniques are highly dependent on precise hand-crafted features which are time-consuming and computationally inefficient. As a solution, we propose a data-driven feature learning framework based on stacked sparse auto-encoders (SSAE) for comprehensive detection of cutaneous vessels. Each training image is divided into small patches of either containing or non-containing vasculature. A multilayer SSAE is designed to learn hidden features of the data in hierarchical layers in an unsupervised manner. The high-level learned features are subsequently fed into a classifier which categorizes each patch into absence or presence of vasculature and localizes vessels within the lesion. Over a test set of 3095 patches derived from 200 images, the proposed framework demonstrated superior performance of 95.4% detection accuracy over a variety of vessel patterns; outperforming other techniques by achieving the highest positive predictive value of 94.7%. The proposed Computer-Aided Diagnosis (CAD) framework can serve as a decision support system assisting dermatologists for more accurate diagnosis, especially in teledermatology applications in remote areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.