In this paper, we present a Convolutional Neural Network (CNN) regression approach to address the two major limitations of existing intensity-based 2-D/3-D registration technology: 1) slow computation and 2) small capture range. Different from optimization-based methods, which iteratively optimize the transformation parameters over a scalar-valued metric function representing the quality of the registration, the proposed method exploits the information embedded in the appearances of the digitally reconstructed radiograph and X-ray images, and employs CNN regressors to directly estimate the transformation parameters. An automatic feature extraction step is introduced to calculate 3-D pose-indexed features that are sensitive to the variables to be regressed while robust to other factors. The CNN regressors are then trained for local zones and applied in a hierarchical manner to break down the complex regression task into multiple simpler sub-tasks that can be learned separately. Weight sharing is furthermore employed in the CNN regression model to reduce the memory footprint. The proposed approach has been quantitatively evaluated on 3 potential clinical applications, demonstrating its significant advantage in providing highly accurate real-time 2-D/3-D registration with a significantly enlarged capture range when compared to intensity-based methods.
Median filtering detection has recently drawn much attention in image editing and image anti-forensic techniques. Current image median filtering forensics algorithms mainly extract features manually. To deal with the challenge of detecting median filtering from small-size and compressed image blocks, by taking into account of the properties of median filtering, we propose a median filtering detection method based on convolutional neural networks (CNNs), which can automatically learn and obtain features directly from the image. To our best knowledge, this is the first work of applying CNNs in median filtering image forensics. Unlike conventional CNN models, the first layer of our CNN framework is a filter layer that accepts an image as the input and outputs its median filtering residual (MFR). Then, via alternating convolutional layers and pooling layers to learn hierarchical representations, we obtain multiple features for further classification. We test the proposed method on several experiments. The results show that the proposed method achieves significant performance improvements, especially in the cut-and-paste forgery detection.Index Terms-Convolutional neural networks, deep learning, hierarchical representations, median filtering forensics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.