In this paper, we observe that semi-structured tabulated text is ubiquitous; understanding them requires not only comprehending the meaning of text fragments, but also implicit relationships between them. We argue that such data can prove as a testing ground for understanding how we reason about information. To study this, we introduce a new dataset called INFOTABS, comprising of human-written textual hypotheses based on premises that are tables extracted from Wikipedia info-boxes. Our analysis shows that the semi-structured, multi-domain and heterogeneous nature of the premises admits complex, multi-faceted reasoning. Experiments reveal that, while human annotators agree on the relationships between a table-hypothesis pair, several standard modeling strategies are unsuccessful at the task, suggesting that reasoning about tables can pose a difficult modeling challenge.
The rise in machine learning-assisted decision-making has led to concerns about the fairness of the decisions and techniques to mitigate problems of discrimination. If a negative decision is made about an individual (denying a loan, rejecting an application for housing, and so on) justice dictates that we be able to ask how we might change circumstances to get a favorable decision the next time. Moreover, the ability to change circumstances (a better education, improved credentials) should not be limited to only those with access to expensive resources. In other words, recourse for negative decisions should be considered a desirable value that can be equalized across (demographically defined) groups. This paper describes how to build models that make accurate predictions while still ensuring that the penalties for a negative outcome do not disadvantage different groups disproportionately. We measure recourse as the distance of an individual from the decision boundary of a classifier. We then introduce a regularized objective to minimize the difference in recourse across groups. We explore linear settings and further extend recourse to non-linear settings as well as model-agnostic settings where the exact distance from boundary cannot be calculated. Our results show that we can successfully decrease the unfairness in recourse while maintaining classifier performance. 2 Keywords Fairness • Recourse • Kernels • Machine Learning * represents equal contribution.
Simple weighted averaging of word vectors often yields effective representations for sentences which outperform sophisticated seq2seq neural models in many tasks. While it is desirable to use the same method to represent documents as well, unfortunately, the effectiveness is lost when representing long documents involving multiple sentences. One of the key reasons is that a longer document is likely to contain words from many different topics; hence, creating a single vector while ignoring all the topical structure is unlikely to yield an effective document representation. This problem is less acute in single sentences and other short text fragments where the presence of a single topic is most likely. To alleviate this problem, we present P-SIF, a partitioned word averaging model to represent long documents. P-SIF retains the simplicity of simple weighted word averaging while taking a document's topical structure into account. In particular, P-SIF learns topic-specific vectors from a document and finally concatenates them all to represent the overall document. We provide theoretical justifications on the correctness of P-SIF. Through a comprehensive set of experiments, we demonstrate P-SIF's effectiveness compared to simple weighted averaging and many other baselines.
Most earlier work on text summarization is carried out on news article datasets. The summary in these datasets is naturally located at the beginning of the text. Hence, a model can spuriously utilize this correlation for summary generation instead of truly learning to summarize. To address this issue, we constructed a new dataset, SUMPUBMED, using scientific articles from the PubMed archive. We conducted a human analysis of summary coverage, redundancy, readability, coherence, and informativeness on SUMPUBMED. SUMPUBMED is challenging because (a) the summary is distributed throughout the text (not-localized on top), and (b) it contains rare domain-specific scientific terms. We observe that seq2seq models that adequately summarize news articles struggle to summarize SUMPUBMED. Thus, SUMPUBMED opens new avenues for the future improvement of models as well as the development of new evaluation metrics.
In this paper, we observe that semi-structured tabulated text is ubiquitous; understanding them requires not only comprehending the meaning of text fragments, but also implicit relationships between them. We argue that such data can prove as a testing ground for understanding how we reason about information. To study this, we introduce a new dataset called INFOTABS, comprising of human-written textual hypotheses based on premises that are tables extracted from Wikipedia info-boxes. Our analysis shows that the semi-structured, multi-domain and heterogeneous nature of the premises admits complex, multi-faceted reasoning. Experiments reveal that, while human annotators agree on the relationships between a table-hypothesis pair, several standard modeling strategies are unsuccessful at the task, suggesting that reasoning about tables can pose a difficult modeling challenge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.