Streptococcus thermophilus CNRZ 385 expresses a cell envelope proteinase (PrtS), which is characterized in the present work, both at the biochemical and genetic levels. Since PrtS is resistant to most classical methods of extraction from the cell envelopes, we developed a three-step process based on loosening of the cell wall by cultivation of the cells in the presence of glycine (20 mM), mechanical disruption (with alumina powder), and enzymatic treatment (lysozyme). The pure enzyme is a serine proteinase highly activated by Ca 2؉ ions. Its activity was optimal at 37°C and pH 7.5 with acetyl-Ala-Ala-Pro-Phe-paranitroanilide as substrate. The study of the hydrolysis of the chromogenic and casein substrates indicated that PrtS presented an intermediate specificity between the most divergent types of cell envelope proteinases from lactococci, known as the PI and PIII types. This result was confirmed by the sequence determination of the regions involved in substrate specificity, which were a mix between those of PI and PIII types, and also had unique residues. Sequence analysis of the PrtS encoding gene revealed that PrtS is a member of the subtilase family. It is a multidomain protein which is maturated and tightly anchored to the cell wall via a mechanism involving an LPXTG motif. PrtS bears similarities to cell envelope proteinases from pyogenic streptococci (C5a peptidase and cell surface proteinase) and lactic acid bacteria (PrtP, PrtH, and PrtB). The highest homologies were found with streptococcal proteinases which lack, as PrtS, one domain (the B domain) present in cell envelope proteinases from all other lactic acid bacteria.Lactic acid bacteria (LAB) are widely used as starters in fermented milk products due to their properties of milk acidification and flavor development. For these applications, their capacity to grow fast in milk is of major importance. LAB are fastidious microorganisms and require an exogenous source of amino acids or peptides for optimal growth. As milk is poor in these low-molecular-weight compounds, their growth largely depends on their proteolytic system to achieve hydrolysis of caseins (65). The cell envelope proteinase (CEP) is the key enzyme of this process since it is the only enzyme capable of initiating the breakdown of caseins into oligopeptides. The latter are then transported into the bacteria and further degraded by a complex set of intracellular peptidases (12).The cell envelope proteinases of lactococci, and to a lesser extent those of lactobacilli, have been the subject of intensive biochemical and genetic investigation (for a review, see reference 37). Lactococcal proteinase PrtP is synthesized as an inactive preproenzyme and maturated via an autoproteolytic process involving a chaperone lipoprotein PrtM, and it is anchored to the cell wall. The hydrolysis specificity of CEPs determined on caseins or casein peptides varies among strains, and several classifications have been proposed (5,18,21,22,24,40,66). The differences observed in substrate specificity are only due...
Resident gut microbes co-exist with transient bacteria to form the gut microbiota. Despite increasing evidence suggesting a role for transient microbes on gut microbiota function, the interplay between resident and transient members of this microbial community is poorly defined. We aimed to determine the extent to which a host's autochthonous gut microbiota influences niche permissivity to transient bacteria using a fermented milk product (FMP) as a vehicle for five food-borne bacterial strains. Using conventional and gnotobiotic rats and gut microbiome analyses (16S rRNA genes pyrosequencing and reverse transcription qPCR), we demonstrated that the clearance kinetics of one FMP bacterium, Lactococcus lactis CNCM I-1631, were dependent on the structure of the resident gut microbiota. Susceptibility of the resident gut microbiota to modulation by FMP intervention correlated with increased persistence of L. lactis. We also observed gut microbiome configurations that were associated with altered stability upon exposure to transient bacteria. Our study supports the concept that allochthonous bacteria have transient and subject-specific effects on the gut microbiome that can be leveraged to re-engineer the gut microbiome and improve dysbiosis-related diseases.
Robust genotyping methods for Lactobacillus casei are needed for strain tracking and collection management, as well as for population biology research. A collection of 52 strains initially labeled L. casei or Lactobacillus paracasei was first subjected to rplB gene sequencing together with reference strains of Lactobacillus zeae, Lactobacillus rhamnosus, and other species. Phylogenetic analysis showed that all 52 strains belonged to a single compact L. casei-L. paracasei sequence cluster, together with strain CIP107868 ؍( ATCC 334) but clearly distinct from L. rhamnosus and from a cluster with L. zeae and CIP103137T ؍( ATCC 393 T ). The strains were genotyped using amplified fragment length polymorphism, multilocus sequence typing based on internal portions of the seven housekeeping genes fusA, ileS, lepA, leuS, pyrG, recA, and recG, and tandem repeat variation (multilocus variable-number tandem repeats analysis [MLVA] using nine loci). Very high concordance was found between the three methods. Although amounts of nucleotide variation were low for the seven genes ( ranging from 0.0038 to 0.0109), 3 to 12 alleles were distinguished, resulting in 31 sequence types. One sequence type (ST1) was frequent (17 strains), but most others were represented by a single strain. Attempts to subtype ST1 strains by MLVA, ribotyping, clustered regularly interspaced short palindromic repeat characterization, and single nucleotide repeat variation were unsuccessful. We found clear evidence for homologous recombination during the diversification of L. casei clones, including a putative intragenic import of DNA into one strain. Nucleotides were estimated to change four times more frequently by recombination than by mutation. However, statistical congruence between individual gene trees was retained, indicating that recombination is not frequent enough to disrupt the phylogenetic signal. The developed multilocus sequence typing scheme should be useful for future studies of L. casei strain diversity and evolution.Lactobacillus casei strains are of considerable interest in the food industry as acid-producing starter culture for milk fermentation and as maturation promoters of certain cheese specialties. In addition, L. casei has attracted intense interest as a probiotic over the last few years (37, 38). For example, L. casei strain DN-114 001 was shown to have positive effects in young children with acute diarrhea (39,40), and the L. casei Shirota strain was shown to decrease the excretion in healthy volunteers of p-cresol, a toxic amino acid metabolite produced by intestinal bacteria (12). L. casei strains may be isolated from a wide variety of sources, including dairy products, plant products, and the urogenital and intestinal tracts of animals, including humans.Virtually nothing is currently known about the genetic diversity and population structure of L. casei. However, knowledge of strain diversity and phylogenetic relationships would be highly relevant for understanding the evolution of ecological or biological properties of ...
The gut barrier plays an important role in human health. When barrier function is impaired, altered permeability and barrier dysfunction can occur, leading to inflammatory bowel diseases, irritable bowel syndrome or obesity. Several bacteria, including pathogens and commensals, have been found to directly or indirectly modulate intestinal barrier function. The use of probiotic strains could be an important landmark in the management of gut dysfunction with a clear impact on the general population. Previously, we found that Lactobacillus rhamnosus CNCM I-3690 can protect intestinal barrier functions in mice inflammation model. Here, we investigated its mechanism of action. Our results show that CNCM I-3690 can (i) physically maintain modulated goblet cells and the mucus layer and (ii) counteract changes in local and systemic lymphocytes. Furthermore, mice colonic transcriptome analysis revealed that CNCM I-3690 enhances the expression of genes related to healthy gut permeability: motility and absorption, cell proliferation; and protective functions by inhibiting endogenous proteases. Finally, SpaFED pili are clearly important effectors since an L. rhamnosus ΔspaF mutant failed to provide the same benefits as the wild type strain. Taken together, our data suggest that CNCM I-3690 restores impaired intestinal barrier functions via anti-inflammatory and cytoprotective responses.
Lactic acid bacteria are nutritionally demanding bacteria which need, among other things, amino acids for optimal growth. We identified the branched-chain amino acid (BCAA) biosynthesis pathway as an essential pathway for optimal growth of Streptococcus thermophilus in milk. Through random insertional mutagenesis, we isolated and characterized two mutants for which growth in milk is affected as a consequence of ilvB and ilvC gene interruptions. This situation demonstrates that the BCAA biosynthesis pathway is active in S. thermophilus. BCAA biosynthesis is necessary but not sufficient for optimal growth of S. thermophilus and is subject to retro-inhibition processes. The specificity of the BCAA biosynthesis pathway in S. thermophilus lies in the independent transcription of the ilvC gene encoding a keto acid reductoisomerase acting on acetolactate at the junction of the BCAA and acetoin biosynthesis pathways. The possible advantages for S. thermophilus of keeping this biosynthesis pathway active could be linked either to adaptation of the organism to milk, which is different than that of other dairy bacteria, or to the role of the pathway in maintaining the internal pH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.