Embedded systems are subjecting to various kinds of security threats. Some malicious attacks exploit valid code gadgets to launch destructive actions or to reveal critical details. Some previous memory encryption strategies aiming at this issue suffer from unacceptable performance overhead and resource consumption. This paper proposes a hardware based confidentiality protection method to secure the code and data stored and transferred in embedded systems. This method takes advantage of the I/D-cache structure to reduce the frequency of the cryptographic encryption and decryption processing. We implement the AES engine with composite field arithmetic to reduce the cost of hardware implementation. The proposed architecture is implemented on EP2C70 FPGA chip with OpenRisc 1200 based SoC. The experiment results show that the AES engine is required to work only in the case of I/D-cache miss and the hardware implementation overhead can save 53.24% and 13.39% for the AES engine and SoC respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.