A semi-empirical, stacked capacitor model was developed to calculate the dielectric constants (k) and deposition rates of hafnium silicate (HfSiO) deposited by nano-laminated atomic layer deposition (NL-ALD) from the HfO 2 and SiO 2 ALD cycles (m and n, respectively). The calculations agree well with the experimental data, with an accuracy of 90%. The model enables the deposition of HfSiO with desired thicknesses and any dielectric constants ranging from 7 to 19 using proper combinations of m and n. The systematic study on the effects of various combinations of m and n that give similar dielectric constants showed that increasing m and n enhances the dielectric scalability due to less defects formed at the highk/IL oxide interface during NL-ALD, but degrades the electrical stability due to more severe charge trapping. Changing m and n has no significant effect on thermal stability and electron mobility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.