During apoptosis, phosphatidylserine, which is normally restricted to the inner leaflet of the plasma membrane, is exposed on the surface of apoptotic cells and has been suggested to act as an "eat-me" signal to trigger phagocytosis. It is unclear how phagocytes recognize phosphatidylserine. Recently, a putative phosphatidylserine receptor (PSR) was identified and proposed to mediate recognition of phosphatidylserine and phagocytosis. We report that psr-1, the Caenorhabditis elegans homolog of PSR, is important for cell corpse engulfment. In vitro PSR-1 binds preferentially phosphatidylserine or cells with exposed phosphatidylserine. In C. elegans, PSR-1 acts in the same cell corpse engulfment pathway mediated by intracellular signaling molecules CED-2 (homologous to the human CrkII protein), CED-5 (DOCK180), CED-10 (Rac GTPase), and CED-12 (ELMO), possibly through direct interaction with CED-5 and CED-12. Our findings suggest that PSR-1 is likely an upstream receptor for the signaling pathway containing CED-2, CED-5, CED-10, and CED-12 proteins and plays an important role in recognizing phosphatidylserine during phagocytosis.
The combination of in vitro and in vivo studies presented here identify two evolutionarily conserved players in engulfment, TRIO/UNC73 and RhoG/MIG-2, and the TRIO --> RhoG signaling module is linked by ELMO/CED-12 to Dock180-dependent Rac activation during engulfment. This work also identifies ARM repeats within CED-12/ELMO and their role in linking RhoG and Rac, two GTPases that function in tandem during engulfment.
Individuals with 22q11.2 microdeletions have cognitive and behavioral impairments and the highest known genetic risk for developing schizophrenia. One gene disrupted by the 22q11.2 microdeletion is DGCR8, a component of the "microprocessor" complex that is essential for microRNA production, resulting in abnormal processing of specific brain miRNAs and working memory deficits. Here, we determine the effect of Dgcr8 deficiency on the structure and function of cortical circuits by assessing their laminar organization, as well as the neuronal morphology, and intrinsic and synaptic properties of layer 5 pyramidal neurons in the prefrontal cortex of Dgcr8 +/− mutant mice. We found that heterozygous Dgcr8 mutant mice have slightly fewer cortical layer 2/4 neurons and that the basal dendrites of layer 5 pyramidal neurons have slightly smaller spines. In addition to the modest structural changes, field potential and whole-cell electrophysiological recordings performed in layer 5 of the prefrontal cortex revealed greater short-term synaptic depression during brief stimulation trains applied at 50 Hz to superficial cortical layers. This finding was accompanied by a decrease in the initial phase of synaptic potentiation. Our results identify altered short-term plasticity as a neural substrate underlying the cognitive dysfunction and the increased risk for schizophrenia associated with the 22q11.2 microdeletions.
In humans, the connection between sleep and mood has long been recognized, although direct molecular evidence is lacking. We identified two rare variants in the circadian clock gene PERIOD3 (PER3-P415A/H417R) in humans with familial advanced sleep phase accompanied by higher Beck Depression Inventory and seasonality scores. hPER3-P415A/H417R transgenic mice showed an altered circadian period under constant light and exhibited phase shifts of the sleep-wake cycle in a short light period (photoperiod) paradigm. Molecular characterization revealed that the rare variants destabilized PER3 and failed to stabilize PERIOD1/2 proteins, which play critical roles in circadian timing. Although hPER3-P415A/H417R-Tg mice showed a mild depression-like phenotype, Per3 knockout mice demonstrated consistent depression-like behavior, particularly when studied under a short photoperiod, supporting a possible role for PER3 in mood regulation. These findings suggest that PER3 may be a nexus for sleep and mood regulation while fine-tuning these processes to adapt to seasonal changes. I n human populations, alterations in circadian timing can result in mood-related problems (1). An example of this is seasonal affective disorder, also known as "winter depression," which is among the most common mood disorders, with a reported prevalence of 1.5-9%, depending on latitude (2). In addition, shift work has been suggested as a risk factor for major depressive disorder (3), and depression severity correlates with the degree of circadian misalignment (4, 5). A number of genetic variants in core clock genes have been reported as statistically associated with mood disorders, including seasonal affective disorder and major depressive disorder (6-14), but to date none has been causally related with an understanding of specific molecular links.Familial advanced sleep phase (FASP) is a human behavioral phenotype defined by early sleep time and early morning awakening (15). We previously identified mutations in core clock genes that cause FASP by linkage analysis/positional cloning (16) and candidate gene sequencing (17, 18). Here we identify two rare missense variants in PER3 (PER3-P415A/H417R) that cause FASP and are associated with elevated Beck Depression Inventory (BDI) and seasonality scores. Transgenic mice carrying human PER3-P415A/H417R exhibit delayed phase in a short photoperiod and a lengthened period of wheel-running rhythms in constant light. At a molecular level, the rare variants lead to decreased PER3 protein levels, likely due to decreased protein stability. Moreover, we found that PER3-P415A/H417R can exert effects on the clock (at least in part) by reducing its stabilizing effect on PER1 and PER2. Although hPER3-P415A/H417R transgenic mice display mild measures of depression-like phenotype, Per3 −/− mice exhibit consistent depression-like behaviors in multiple tests. The differences are particularly evident in short photoperiods, implying a role for PER3 in mood regulation. Taken together, these results support a role for PER3 in ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.