Three-dimensional turbulent flow and dispersion of gaseous pollutants carbon monoxide (CO) and nitrogen oxides (NOx) in a road tunnel was modeled using the standard k-epsilon turbulence model and solved numerically using the finite volume method. Vehicle emissions were estimated from the measured traffic flow rates and modeled as banded line sources along the tunnel floor. The effects of fan ventilation and piston effect of moving vehicles on the airflow and pollutant dilution were examined. The numerical results reveal that a peak velocity exists near the tunnel floor due to the piston effect of vehicles. The cross-sectional concentrations of air pollutants are non-uniformly distributed and concentrations rise with downstream distance. The piston effect of vehicles can alone provide 25%-34% dilution of air pollutants in the tunnel, compounded 43%-70% dilution effect according to the ventilation condition.
In this study, a questionnaire survey of school drinking water quality of 42 schools in Pingtung County was conducted according to the water sources, treatment facilities, location of school as well as different grade levels. Among them, 45% of schools used tap water as the main source of drinking water, and the schools using groundwater and surface water as drinking water source account for 29% and 26%, respectively. The schools above senior high school level in the city used tap water as drinking water more than underground water, while the schools under junior high school level in the rural area used surface water as their main source of drinking water. The surface water was normally boiled before being provided to their students. The reverse osmosis system is a commonly used water treatment equipment for those schools using tap water or underground water. Drinking fountain or boiled water unit is widely installed in schools above senior high school level. For schools under junior high school level, a pipeline is stretched across the campus. Relative test shows that the unqualified rate of microbe in water is 26.2%. All parameters for physical and chemical properties and metal content had met the domestic standards except that the turbidity of schools under junior high school level using tap water is slightly higher than the standard value.
Bakery products made from naturally fermented sourdough show a diversified flavor and nutritional profile. Djulis (Chenopodium formosanum), known as red quinoa or Taiwan djulis, originally cultivated by Taiwanese indigenous people in mountain areas in eastern and southern Taiwan, has a high nutritional value and characteristic properties. In the present study, a new bakery product (djulis sourdough bread) was developed and a combination of the Taguchi method coupled with grey theory was utilized to optimize the baking parameters (product formulation). Five main factors, i.e., djulis sourdough (A), hulled djulis (B), oil type (C), a mixture of bread flour (wet gluten content of 29.0%) and a high-gluten flour (wet gluten content of 35.5%) (D), and honey (E), (each at four levels) were chosen for the Taguchi experiment design (L16(4)5). Dependent parameters were the data from texture profile analysis (brittleness, springiness, cohesiveness, gumminess, and chewiness), color analysis (L*, a*, and b*), and sensory evaluation (appearance, aroma, bitterness, sourness, chewiness, and overall acceptance) of the final product. Taguchi grey relational analysis successfully determined the optimal conditions based on combined parameters (5 factors), which highlighted the advantages of this innovative optimization technique. The result shows that the optimal formula for producing a djulis sourdough bread with the best texture, color, and sensory qualities was A3B1C1D2E2, i.e., 20% djulis sourdough, 0% addition of hulled djulis, 8% unsalted butter, 80% wheat flour + 20% high-gluten flour, and 10% honey, respectively. Such a novel application could be a reference for improving the quality of bakery products in the industry. Moreover, it seems that the new bakery product developed in this study has good potential to be commercially produced after further nutritional and economic analysis.
A regional carbon neutral model was built to assess the balance of carbon dioxide (CO 2 ) absorption by plants and emission by power usage in Tajen University, in the south of Taiwan, in order to test a carbon neutral model on a small-scale carbon neutral effect and its correlation to a large-scale forest carbon neutral effect. The number of plants was measured to estimate the CO 2 fixation volume on the Tajen University campus. The results showed that the total CO 2 absorption volume by plants was 34,800 tons during a 40-year plant life period on the campus. This absorption capacity was over the baseline of the green building standard in Taiwan, which is 31,800 tons. The plants on the Tajen University campus could absorb approximately 870 tons of CO 2 per year. However, this was lower than the estimated yearly CO 2 emission volume of 6721 tons which was emitted from power and diesel fuel usage in the campus. In order to reach a balance, it will be necessary to plant more trees and reduce energy usage on the campus in order to increase CO 2 absorption, and it will additionally be necessary to implement energy conservation policies to reach the goal of regional carbon neutrality.
In the land ecosystem, the forest can absorb the carbon dioxide (CO2) in the atmosphere and turn the CO2 into organic carbon to store it in the plant body. About 2×10(11) tons of CO2 changes through photosynthesis into organic matter by plant annually. In this research, ten kinds of woody plants were selected for assessing the carbon fixation ability influenced by sulfur dioxide (SO2). The tested trees were put into a fumigation chamber for 210 days in a 40-ppb SO2 environment. The results of this study showed that there was no clear symptom of tested trees under a 40-ppb SO2 environment. The tested trees could tolerate this polluted environment, but it will impact their CO2 absorption ability. The carbon fixation ability will reduce as the polluted period lengthens. The carbon fixation potential of tested trees ranged from 2.1 to 15.5 g·CO2/m2·d with an average of 7.7 g·CO2/m2·d. The changes in CO2 absorption volume for Messerschmidia argentea were more stable during the fumigation period with a variation of 102%. Among the tested trees, Diospyros morrisiana had the best carbon fixation potential of 9.19 g·CO2/m2·d and M. argentea had the least with 2.54 g·CO2/m2·d.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.