Objective Pituitary adenomas are the most common type of pituitary disorders, which usually occur in young adults and often affect the patient’s physical development, labor capacity and fertility. Clinical free texts noted in electronic medical records (EMRs) of pituitary adenomas patients contain abundant diagnosis and treatment information. However, this information has not been well utilized because of the challenge to extract information from unstructured clinical texts. This study aims to enable machines to intelligently process clinical information, and automatically extract clinical named entity for pituitary adenomas from Chinese EMRs. Methods The clinical corpus used in this study was from one pituitary adenomas neurosurgery treatment center of a 3A hospital in China. Four types of fine-grained texts of clinical records were selected, which included notes from present illness, past medical history, case characteristics and family history of 500 pituitary adenoma inpatients. The dictionary-based matching, conditional random fields (CRF), bidirectional long short-term memory with CRF (BiLSTM-CRF), and bidirectional encoder representations from transformers with BiLSTM-CRF (BERT-BiLSTM-CRF) were used to extract clinical entities from a Chinese EMRs corpus. A comprehensive dictionary was constructed based on open source vocabularies and a domain dictionary for pituitary adenomas to conduct the dictionary-based matching method. We selected features such as part of speech, radical, document type, and the position of characters to train the CRF-based model. Random character embeddings and the character embeddings pretrained by BERT were used respectively as the input features for the BiLSTM-CRF model and the BERT-BiLSTM-CRF model. Both strict metric and relaxed metric were used to evaluate the performance of these methods. Results Experimental results demonstrated that the deep learning and other machine learning methods were able to automatically extract clinical named entities, including symptoms, body regions, diseases, family histories, surgeries, medications, and disease courses of pituitary adenomas from Chinese EMRs. With regard to overall performance, BERT-BiLSTM-CRF has the highest strict F1 value of 91.27% and the highest relaxed F1 value of 95.57% respectively. Additional evaluations showed that BERT-BiLSTM-CRF performed best in almost all entity recognition except surgery and disease course. BiLSTM-CRF performed best in disease course entity recognition, and performed as well as the CRF model for part of speech, radical and document type features, with both strict and relaxed F1 value reaching 96.48%. The CRF model with part of speech, radical and document type features performed best in surgery entity recognition with relaxed F1 value of 95.29%. Conclusions In this study, we conducted four entity recognition methods for pituitary adenomas based on Chinese EMRs. It demonstrates that the deep learning methods can effectively extract various types of clinical entities with satisfying performance. This study contributed to the clinical named entity extraction from Chinese neurosurgical EMRs. The findings could also assist in information extraction in other Chinese medical texts.
Background Pituitary adenoma is one of the most common central nervous system tumors. The diagnosis and treatment of pituitary adenoma remain very difficult. Misdiagnosis and recurrence often occur, and experienced neurosurgeons are in serious shortage. A knowledge graph can help interns quickly understand the medical knowledge related to pituitary tumor. Objective The aim of this study was to develop a data fusion method suitable for medical data using data of pituitary adenomas integrated from different sources. The overall goal was to construct a knowledge graph for pituitary adenoma (KGPA) to be used for knowledge discovery. Methods A complete framework suitable for the construction of a medical knowledge graph was developed, which was used to build the KGPA. The schema of the KGPA was manually constructed. Information of pituitary adenoma was automatically extracted from Chinese electronic medical records (CEMRs) and medical websites through a conditional random field model and newly designed web wrappers. An entity fusion method is proposed based on the head-and-tail entity fusion model to fuse the data from heterogeneous sources. Results Data were extracted from 300 CEMRs of pituitary adenoma and 4 health portals. Entity fusion was carried out using the proposed data fusion model. The F1 scores of the head and tail entity fusions were 97.32% and 98.57%, respectively. Triples from the constructed KGPA were selected for evaluation, demonstrating 95.4% accuracy. Conclusions This paper introduces an approach to fuse triples extracted from heterogeneous data sources, which can be used to build a knowledge graph. The evaluation results showed that the data in the KGPA are of high quality. The constructed KGPA can help physicians in clinical practice.
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
BACKGROUND Pituitary adenoma is one of the most common central nervous system tumors. The diagnosis and treatment of pituitary adenoma are still very difficult. Misdiagnosis and recurrence occur from time to time, and experienced neurosurgeons are in serious shortage. Knowledge graphs can help interns quickly understand the medical knowledge related to pituitary tumor. OBJECTIVE The aim of this paper is to integrate the data of pituitary adenomas from reliable sources and construct a knowledge graph, and use the knowledge graph for knowledge discovery. METHODS A method of constructing a knowledge graph of diseases was introduced and used to build a knowledge graph for pituitary adenoma (KGPA). The schema of the KGPA was manually constructed. Information of pituitary adenoma were automatically extracted from EMR and the medical websites through the CRF model and web wrappers we designed. An entity fusion method was proposed, based on the head and tail entity fusion models, to fuse the data from heterogeneous sources. The disease entities were standardized to ICD-10. RESULTS Data was extracted from 300 EMRs of pituitary adenoma and 4 medical portals. Entity fusion was carried out by using the data fusion model we proposed. The accuracy of the head and tail entity fusion were more than 97%. Part of the triples were selected for evaluation, and the accuracy was 95.4%. CONCLUSIONS This paper introduced an approach to construct KGPA and proposed a data fusion method suitable for medical data. The evaluation results show that the data in KGPA is of high quality. The constructed KGPA can help physicians in their clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.