BackgroundAn estimated 32,000 children develop multidrug-resistant tuberculosis (MDR-TB; Mycobacterium tuberculosis resistant to isoniazid and rifampin) each year. Little is known about the optimal treatment for these children.Methods and findingsTo inform the pediatric aspects of the revised World Health Organization (WHO) MDR-TB treatment guidelines, we performed a systematic review and individual patient data (IPD) meta-analysis, describing treatment outcomes in children treated for MDR-TB. To identify eligible reports we searched PubMed, LILACS, Embase, The Cochrane Library, PsychINFO, and BioMedCentral databases through 1 October 2014. To identify unpublished data, we reviewed conference abstracts, contacted experts in the field, and requested data through other routes, including at national and international conferences and through organizations working in pediatric MDR-TB. A cohort was eligible for inclusion if it included a minimum of three children (aged <15 years) who were treated for bacteriologically confirmed or clinically diagnosed MDR-TB, and if treatment outcomes were reported. The search yielded 2,772 reports; after review, 33 studies were eligible for inclusion, with IPD provided for 28 of these. All data were from published or unpublished observational cohorts. We analyzed demographic, clinical, and treatment factors as predictors of treatment outcome. In order to obtain adjusted estimates, we used a random-effects multivariable logistic regression (random intercept and random slope, unless specified otherwise) adjusted for the following covariates: age, sex, HIV infection, malnutrition, severe extrapulmonary disease, or the presence of severe disease on chest radiograph. We analyzed data from 975 children from 18 countries; 731 (75%) had bacteriologically confirmed and 244 (25%) had clinically diagnosed MDR-TB. The median age was 7.1 years. Of 910 (93%) children with documented HIV status, 359 (39%) were infected with HIV. When compared to clinically diagnosed patients, children with confirmed MDR-TB were more likely to be older, to be infected with HIV, to be malnourished, and to have severe tuberculosis (TB) on chest radiograph (p < 0.001 for all characteristics). Overall, 764 of 975 (78%) had a successful treatment outcome at the conclusion of therapy: 548/731 (75%) of confirmed and 216/244 (89%) of clinically diagnosed children (absolute difference 14%, 95% confidence interval [CI] 8%–19%, p < 0.001). Treatment was successful in only 56% of children with bacteriologically confirmed TB who were infected with HIV who did not receive any antiretroviral treatment (ART) during MDR-TB therapy, compared to 82% in children infected with HIV who received ART during MDR-TB therapy (absolute difference 26%, 95% CI 5%–48%, p = 0.006). In children with confirmed MDR-TB, the use of second-line injectable agents and high-dose isoniazid (15–20 mg/kg/day) were associated with treatment success (adjusted odds ratio [aOR] 2.9, 95% CI 1.0–8.3, p = 0.041 and aOR 5.9, 95% CI 1.7–20.5, p = 0.007, respectively). ...
The purpose of this study was to demonstrate a neural respiratory gating system using a paired stimuli paradigm. The N1 peak of the respiratory-related evoked potential (RREP) represents early perceptual processing of respiratory sensory information. This is similar to the N100 peak shown with tactile sensation, where the second peak amplitude (S2) of the N100 peak from the somatosensory evoked potential (SEP) was smaller than the first peak amplitude (S1) when the stimuli were presented 500 ms apart. We hypothesized that paired inspiratory occlusions would result in a reduced amplitude of the S2 N1 RREP peak amplitude, indicating respiratory central neural gating. Twenty healthy subjects (10 men and 10 women; 25.8 +/- 6.5 yr old) completed the paired inspiratory occlusion (RREP) trial. Thirteen of the subjects also completed the paired mouth air puffs [mouth-evoked potential (MEP) trial], and the paired hand air puffs (SEP) trial. All paired presentations were separated by 500 ms. The N1 peak amplitudes of the RREP trial and the N100 peak amplitudes of the MEP and SEP trials for S1 and S2 and the S2/S1 ratios were determined. The S1 RREP N1 peak amplitude was significantly greater than S2, and the S2/S1 ratio was 0.43. The S1 MEP and SEP N100 peak amplitudes were significantly greater than S2, and the N100 ratio was 0.49 and 0.49, respectively. These results are consistent with central neural gating of respiratory afferent input. The RREP gating response is similar to somatosensory mechanoreceptor gating.
The relationship between detection threshold of inspiratory resistive loads and the peaks of the respiratory-related evoked potential (RREP) is unknown. It was hypothesized that the short-latency and long-latency peaks of the RREP would only be elicited by inspiratory loads that exceeded the detection threshold. The detection threshold for inspiratory resistive loads was measured in healthy subjects with inspiratory-interruption or onset load presentations. In a separate protocol, the RREPs were recorded with resistive loads that spanned the detection threshold. The loads were presented in stimulus attend and ignore sessions. Onset and interruption load presentations had the same resistive load detection threshold. The P(1), N(f), and N(1) peaks of the RREP were observed with loads that exceeded the detection threshold in both attend and ignore conditions. The P(300) was present with loads that exceeded the detection threshold only in the attend condition. No RREP components were elicited with subthreshold loads. The P(1), N(f), and P(300) amplitudes varied with resistive load magnitude. The results support the hypothesis that there is a resistive load threshold for eliciting the RREPs. The amplitude of the RREP peaks vary as a function of load magnitude. The cognitive P(300) RREP peak is present only for detectable loads and when the subject attends to the stimulus. The absence of the RREP with loads below the detection threshold and the presence of the RREP elicited by suprathreshold loads are consistent with the gating of these neural measures of respiratory mechanosensory information processing.
Previous studies demonstrated that anxiety considerably impacts the reported perceptions of respiratory sensations. A novel feature of the current study is exploring the impact of anxiety on the neural processing of respiratory sensations elicited by short inspiratory occlusions during different affective contexts. Using high-density EEG, respiratory-related evoked potentials (RREP) were recorded in 23 low and 23 matched higher anxious individuals when viewing unpleasant or neutral picture series. Low anxious individuals showed the expected pattern of reduced magnitudes of later RREP components P2 and P3 during the unpleasant compared to the neutral affective context (p < 0.05 and p < 0.01). In contrast, higher anxious individuals showed greater magnitudes of P2 and P3 during the unpleasant compared to the neutral affective context (p's < 0.05). Moreover, higher anxiety levels were correlated with greater magnitudes for P2 (r = 0.44, p < 0.01) and P3 (r = 0.54, p < 0.001) during the unpleasant relative to the neutral affective context. Earlier components of the RREP (Nf, P1, N1) were not affected by anxiety. This study demonstrates that anxiety affects the later, higher-order neural processing of respiratory sensations, but not its earlier, first-order sensory processing. These findings might represent a neural mechanism that underlies the increased perception of respiratory sensations in anxious individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.