We have developed an all-electronic digital microfluidic device for microscale chemical synthesis in organic solvents, operated by electrowetting-on-dielectric (EWOD). As an example of the principles, we demonstrate the multistep synthesis of ½ 18 FFDG, the most common radiotracer for positron emission tomography (PET), with high and reliable radio-fluorination efficiency of ½ 18 FFTAG (88 AE 7%, n ¼ 11) and quantitative hydrolysis to ½ 18 FFDG (>95%, n ¼ 11). We furthermore show that batches of purified ½ 18 FFDG can successfully be used for PET imaging in mice and that they pass typical quality control requirements for human use (including radiochemical purity, residual solvents, Kryptofix, chemical purity, and pH). We report statistical repeatability of the radiosynthesis rather than bestcase results, demonstrating the robustness of the EWOD microfluidic platform. Exhibiting high compatibility with organic solvents and the ability to carry out sophisticated actuation and sensing of reaction droplets, EWOD is a unique platform for performing diverse microscale chemical syntheses in small volumes, including multistep processes with intermediate solvent-exchange steps. molecular imaging | PET probes | synthetic chemistry | lab on a chip | on-chip chemistry T he use of micro-reaction technology in chemistry has grown tremendously over the past several years (1), due primarily to the highly precise control of reaction conditions that is possible through rapid mixing and heat transport, leading to improved reaction speeds and selectivity compared to macroscale approaches (2). Additional advantages include straightforward scale-up of production without changing conditions, and increased safety in dangerous syntheses due to the minute amounts of reagents within the reactor at any given time. A further advantage of microfluidics is the ability to perform reactions in extremely small volumes, which is valuable for many applications, especially when working with scarce reagents, such as isolated proteins or natural products, products of long synthetic pathways, or short-lived radiolabeled radioisotopes where the needed mass quantities are extremely low (3).Myriad microfluidic platforms have been explored for chemical reactions that can be classified into three basic formats: (i) flow-through (or continuous flow), (ii) droplet or slug, or (iii) batch. In flow-through systems, streams of two or more reagents are mixed and reacted by flowing through a residence time unit held at a constant temperature or immersed in a fixed microwave field. Continuous liquid-liquid extraction and other processes have been developed to enable multistep reactions where different solvents are required in different steps (4). Droplet and slug systems are a variant of flow-through systems, in which individual droplets or slugs (with volumes down to tens of nanoliters) are separated by an immiscible carrier fluid, each acting as an isolated batch microreactor and enabling vastly reduced reaction volumes. Screening assays and optimization studies...
A novel synthetic route to polymer-coated ferromagnetic colloids of metallic cobalt has been developed. Well-defined end-functional polystyrenes were synthesized using controlled radical polymerization and used as surfactants in the thermolysis of dicobaltoctacarbonyl to afford uniform ferromagnetic nanoparticles. The presence of the polymer shell enabled prolonged colloidal stability of dispersions in a wide range of organic solvents and formed glassy encapsulating coatings around ferromagnetic cores in the solid state. These polymer-coated colloids assembled into robust, micron-sized nanoparticle chains when cast onto supporting surfaces due to dipolar associations of magnetic cores. Hierarchical assemblies were also prepared by blending polystyrene-coated cobalt colloids with larger silica beads.
The preparation of polystyrene-coated cobalt oxide nanowires is reported via the colloidal polymerization of polymer-coated ferromagnetic cobalt nanoparticles (PS-CoNPs). Using a combination of dipolar nanoparticle assembly and a solution oxidation of preorganized metallic colloids, interconnected nanoparticles of cobalt oxide spanning micrometers in length were prepared. The colloidal polymerization of PS-CoNPs into cobalt oxide (CoO and Co(3)O(4)) nanowires was achieved by bubbling O(2) into PS-CoNP dispersions in 1,2-dichlorobenzene at 175 degrees C. Calcination of thin films of PS-coated cobalt oxide nanowires afforded Co(3)O(4) metal oxide materials. Transmission electron microscopy (TEM) revealed the formation of interconnected nanoparticles of cobalt oxide with hollow inclusions, arising from a combination of dipolar assembly of PS-CoNPs and the nanoscale Kirkendall effect in the oxidation reaction. Using a wide range of spectroscopic and electrochemical characterization techniques, we demonstrate that cobalt oxide nanowires prepared via this novel methodology were electroactive with potential applications as nanostructured electrodes for energy storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.