WRKY transcription factors (TFs) play a vital role in plant stress signal transduction and regulate the expression of various stress resistance genes. Sweet orange (Citrus sinensis) accounts for a large proportion of the world’s citrus industry, which has high economic value, while Penicillium digitatum is a prime pathogenic causing postharvest rot of oranges. There are few reports on how CsWRKY TFs play their regulatory roles after P. digitatum infects the fruit. In this study, we performed genome-wide identification, classification, phylogenetic and conserved domain analysis of CsWRKY TFs, visualized the structure and chromosomal localization of the encoded genes, explored the expression pattern of each CsWRKY gene under P. digitatum stress by transcriptome data, and made the functional prediction of the related genes. This study provided insight into the characteristics of 47 CsWRKY TFs, which were divided into three subfamilies and eight subgroups. TFs coding genes were unevenly distributed on nine chromosomes. The visualized results of the intron-exon structure and domain are closely related to phylogeny, and widely distributed cis-regulatory elements on each gene played a global regulatory role in gene expression. The expansion of the CSWRKY TFs family was probably facilitated by twenty-one pairs of duplicated genes, and the results of Ka/Ks calculations indicated that this gene family was primarily subjected to purifying selection during evolution. Our transcriptome data showed that 95.7% of WRKY genes were involved in the transcriptional regulation of sweet orange in response to P. digitatum infection. We obtained 15 differentially expressed genes and used the reported function of AtWRKY genes as references. They may be involved in defense against P. digitatum and other pathogens, closely related to the stress responses during plant growth and development. Two interesting genes, CsWRKY2 and CsWRKY14, were expressed more than 60 times and could be used as excellent candidate genes in sweet orange genetic improvement. This study offers a theoretical basis for the response of CSWRKY TFs to P. digitatum infection and provides a vital reference for molecular breeding.
(1) Background: The sweet orange (Citrus sinensis) is the most widely cultivated and productive citrus fruit in the world, with considerable economic value and good prospects for development. However, post-harvest storage and transport of the fruit are often affected by infestation by Penicillium species, leading to many losses. (2) Methods: In this study, the family of bZIP genes from the whole genome of sweet orange was identified and analyzed in detail in terms of gene structure, physicochemical properties, protein structure, conserved structural domains, chromosomal positioning, and promoter analysis using bioinformatic analysis, in addition to an analysis of the expression patterns of the fruit following Penicillium infection. (3) Results: In this study, 50 CsbZIP genes were identified from the sweet orange genome. In silico analysis showed that Cs_ont_3g005140 was presumably localized in the chloroplasts, while the rest of the family members were located in the nucleus. Phylogenetic trees of grape, apple, Arabidopsis, and sweet orange were constructed on the basis of evolutionary relationships and divided into 16 subfamilies. Conserved motif analysis showed that all CsbZIP family genes encode proteins containing the highly conserved Motif 1. Promoter prediction analysis showed the chromosomal positioning, and the covariance analysis showed that the 50 CsbZIPs were unevenly distributed on nine chromosomes, with 10 pairs of duplicated genes. In the analysis of expression patterns, 11 of the 50 CsbZIP genes were not expressed, 12 were upregulated, 27 were downregulated, and five of the upregulated genes were highly expressed. (4) Conclusions: In this study, two CsbZIP members were each closely related to two Arabidopsis thaliana genes associated with salt stress. The functions of the replicated and re-differentiated CsbZIP homologs (Cs_ont_1g027160 and Cs_ont_8g020880) divergee further, with one responding to inoculation by Penicillium and the other not doing so. Five genes associated with sweet orange in response to Penicillium infestation were initially screened (Cs_ont_3g000400, Cs_ont_3g003210, Cs_ont_5g007090, Cs_ont_5g011180, Cs_ont_8g020880). This study provides some theoretical basis for subsequent research into the response mechanism of sweet orange bZIP transcription factors under biotic stresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.