Gastric cancer (GC) is a highly prevalent digestive malignant tumor, ranking second in the tumor-related mortality globally. The microRNAs have been confirmed to be connected with GC progression. Accumulative evidence has suggested that miR-6838-5p exerts a suppressive effect on human cancers. Nonetheless, whether miR-6838-5p is involved in the regulation of GC remains to be investigated. During our research, miR-6838-5p was downregulated in GC cells. Upregulated miR-6838-5p repressed GC cell cycle progression, proliferation, migration, and invasion. Furthermore, miR-6838-5p overexpression repressed the nuclear import of β-catenin, thus inactivating Wnt/β-catenin pathway. Moreover, we observed that GPRIN3 was targeted by miR-6838-5p in GC with luciferase reporter and RIP assays. GPRIN3 upregulation reversed the suppression of miR-6838-5p in GC cellular processes. These findings suggest miR-6838-5p restrains the malignant behaviors of GC cells via targeting GPRIN3 to repress Wnt/β-catenin signaling pathway, which may provide novel targets for GC treatment.
Background
Gastric carcinoma (GC) ranks the fifth most common cancer worldwide, with high incidence and mortality rates. Numerous microRNAs (miRNAs), including miR-654-5p, have been implicated in the pathophysiological processes of tumorigenesis. Nevertheless, the mechanism of miR-654-5p in GC is unclear.
Objectives
Our study is devoted to exploring the function and molecular mechanism of miR-654-5p on the malignant cell behaviors of GC.
Methods
The gene expression was detected by reverse transcription quantitative polymerase chain reaction. GC cell proliferation and motion were assessed by colony formation assay and transwell assay. The binding capacity between miR-654-5p and G protein-regulated inducer of neurite outgrowth 1 (GPRIN1) was explored by luciferase reporter and RNA pulldown assays. The protein levels were detected by Western blotting.
Results
miR-654-5p expression was higher in GC cells and tissues than control cells and tissues. miR-654-5p promoted GC cell growth and motion. Moreover, our findings showed that miR-654-5p was bound with GPRIN1. Importantly, downregulation of GPRIN1 rescued the inhibitory influence of miR-654-5p knockdown on GC cell malignant behaviors. Additionally, miR-654-5p activated the nuclear factor kappa-B (NF-κB) pathway by regulation of GPRIN1.
Conclusions
miR-654-5p facilitated cell proliferation, migration, and invasion in GC via targeting the GPRIN1 to activate the NF-κB pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.