Nonlinear oxides such as LiNbO3 have found many applications in both conventional electro-optics and quantum optics. In this work, we demonstrate the van der Waals and remote epitaxy of LiNbO3 films on muscovite mica and graphene-buffered sapphire, respectively, by pulsed laser deposition. Structural analysis shows that the epitaxial relation in van der Waals epitaxy is LiNbO3 (0001) || mica (001) and LiNbO3 [011¯0] || mica [010] with LiNbO3 [101¯0] || mica [010], a 60°-rotated twin structure. The relation in remote epitaxy is LiNbO3 (0001) || sapphire (0001) and LiNbO3 [011¯0] || sapphire [011¯0] with twin structure LiNbO3 [1¯010] || sapphire [011¯0]. Furthermore, in remote epitaxy, Raman scattering analysis confirms the existence of graphene after deposition. Finally, we find that the oxygen partial pressure influences the presence of impurity phases significantly. The successful demonstration of van der Waals and remote epitaxy promises the feasibility of developing thin film LiNbO3 on demanded substrates toward scalable electro-optics.
Rocksalt-structure nitrides emerge as a promising class of semiconductors for high-temperature thermoelectric and plasmonic applications. Controlling the bandgap and strain is essential for the development of a wide variety of...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.