In this paper the propulsion of elliptical objects (called squirmers) by imposed tangential velocity along the surface is studied. For a symmetric velocity distribution (a neutral squirmer), pushers (increased tangential velocity on the downstream side of the ellipse) and pullers (increased tangential velocity on the upstream side of the ellipse), the hydrodynamic characteristics, are simulated numerically using the immersed boundary-lattice Boltzmann method. The accuracy of the numerical scheme and code are validated. The effects of Reynolds number (Re) and squirmer aspect ratio (AR) on the velocity u*, power expenditure P* and hydrodynamic efficiency η of the squirmer are explored. The results show that the change of u* along radial direction r* shows the relation of u*~r*−2 for the neutral squirmer, and u*~r*−1 for the pusher and puller. With the increase of Re, u* of the pusher increases monotonically, but u* of the puller decreases from Re=0.01 to 0.3, and then increases from Re=0.3 to 3. The values of P* of the pusher and puller are the same for 0.01 ≤ Re ≤ 0.3; P* of the pusher is larger than that of the puller when Re > 0.3. η of the pusher and puller increases with increasing Re, but the pusher has a larger η than the puller at the same Re. u* and P* decrease with increasing AR, and the pusher and puller have the largest and least u*, respectively. The values of P* of the pusher and puller are almost the same and are much larger than those of the neutral squirmer. With the increase of AR, η increases for the neutral squirmer, but changes non-monotonically for the pusher and puller.
In order to effectively describe the effect of Brownian force exerted on the micro/nano-particles in air flow, a new weight factor, which is defined as the ratio of the characteristic velocity of the Brownian motion to the macroscopic velocity, is proposed and applied to the particle settlement under gravity. Results show that the weight factor can quantitatively evaluate the effect of Brownian force on the particle motion. Moreover, the value of the weight factor can also be used to judge the particle motion pattern and determine whether the Brownian force should be taken into account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.