Background
Gastric cancer (GC) is a highly heterogeneous disease with many different histological and molecular subtypes. Due to their reduced systemic adverse effects, nanoformulation agents have attracted increasing attention for use in the treatment of GC patients in the clinic. To improve therapeutic outcomes, it is vitally necessary to provide individual medication references and guidance for use of these nanoformulations, and patient-derived organoids (PDOs) are promising models through which to achieve this goal.
Results
Using an improved enzymatic digestion process, we succeeded in constructing GC PDOs from surgically resected tumor tissues and endoscopic biopsies from GC patients; these PDOs closely recapitulated the histopathological and genomic features of the corresponding primary tumors. Next, we chose two representative paclitaxel (PTX) nanoformulations for comparative study and found that liposomal PTX outperformed albumin-bound PTX in killing GC PDOs at both the transcriptome and cellular levels. Our results further showed that the different distributions of liposomal PTX and albumin-bound PTX in PDOs played an essential role in the distinct mechanisms through which they kill PDOs. Finally, we constructed patient-derived xenografts model in which we verified the above distinct therapeutic outcomes via an intratumoral administration route.
Conclusions
This study demonstrates that GC PDOs are reliable tools for predicting nanoformulation efficacy.
Graphical Abstract
The use of bacteria and their biotic components as therapeutics has shown great potential in the treatment of diseases. Orally delivered bacteria improve patient compliance compared with injection‐administered bacteria and are considered the preferred mode. However, due to the harsh gastrointestinal environment, the viability and therapeutic efficacy of orally delivered bacteria are significantly reduced in vivo. In recent years, with the rapid development of synthetic biology and nanotechnology, bacteria and biotic components have been engineered to achieve directed genetic reprogramming for construction and precise spatiotemporal control in the gastrointestinal tract, which can improve viability and therapeutic efficiency. Herein, a state‐of‐the‐art review on the current progress of engineered bacterial systems for oral delivery is provided. The different types of bacterial and biotic components for oral administration are first summarized. The engineering strategies of these bacteria and biotic components and their treatment of diseases are next systematically summarized. Finally, the current challenges and prospects of these bacterial therapeutics are highlighted that will contribute to the development of next‐generation orally delivered bacteriotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.