In developing countries, decision-making regarding old rural houses significantly relies on expert site investigations, which are criticized for being resource-demanding. This paper aims to construct an efficient Bayesian classifier for house safety and habitability risk evaluations, enabling people with none-civil-engineering backgrounds to make judgements comparable with experts so that house risk levels can be checked regularly at low costs. An initial list of critical risk factors for house safety and habitability was identified with a literature review and verified by expert discussions, field surveys, and Pearson’s Chi-square test of independence with 864 questionnaire samples. The model was constructed according to the causal mechanism between the verified factors and quantified using Bayesian belief network parameter learning. The model reached relatively high accuracy rates, ranging from 91.3% to 100.0% under different situations, including crosschecks with unused expert judgement samples with full input data, crosschecks with unused expert judgement samples with missing input data, and those involving local residents’ judgement. Model sensitivity analyses revealed walls; purlins and roof trusses; and foundations as the three most critical factors for safety and insulation and waterproofing; water and electricity; and fire safety for habitability. The identified list of critical factors contributes to the rural house evaluation and management strategies for developing countries. In addition, the established Bayesian classifier enables regular house checks on a regular and economical basis.
PurposeTime-cost trade-off is normal conduct in construction projects when projects are expectedly late for delivery. Existing research on time-cost trade-off strategic management mostly focused on the technical calculation towards the optimal combination of activities to be accelerated, while the managerial aspects are mostly neglected. This paper aims to understand the managerial efforts necessary to prepare construction projects ready for an upcoming trade-off implementation.Design/methodology/approachA preliminary list of critical factors was first identified from the literature and verified by a Delphi survey. Quantitative data was then collected by a questionnaire survey to first shortlist the preliminary factors and quantify the predictive model with different machine learning algorithms, i.e. k-nearest neighbours (kNN), radial basis function (RBF), multiplayer perceptron (MLP), multinomial logistic regression (MLR), naïve Bayes classifier (NBC) and Bayesian belief networks (BBNs).FindingsThe model's independent variable importance ranking revealed that the top challenges faced were the realism of contractual obligation, contractor planning and control and client management and monitoring. Among the tested machine learning algorithms, multilayer perceptron was demonstrated to be the most suitable in this case. This model accuracy reached 96.5% with the training dataset and 95.6% with an independent test dataset and could be used as the contingency approach for time-cost trade-offs.Originality/valueThe identified factor list contributed to the theoretical explanation of the failed implementation in general and practical managerial improvement to better avoid such failure. In addition, the established predictive model provided an ad-hoc early warning and diagnostic tool to better ensure time-cost implementation success.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.