Exosomes are nanosized extracellular vesicles (EVs) that show great promise in tissue regeneration and injury repair as mesenchymal stem cell (MSC). MSC has been shown to alleviate diabetes mellitus (DM) in both animal models and clinical trials. In this study, we aimed to investigate whether exosomes from human umbilical cord MSC (hucMSC-ex) have a therapeutic effect on type 2 DM (T2DM). We established a rat model of T2DM using a high-fat diet and streptozotocin (STZ). We found that the intravenous injection of hucMSC-ex reduced blood glucose levels as a main paracrine approach of MSC. HucMSC-ex partially reversed insulin resistance in T2DM indirectly to accelerate glucose metabolism. HucMSC-ex restored the phosphorylation (tyrosine site) of the insulin receptor substrate 1 and protein kinase B in T2DM, promoted expression and membrane translocation of glucose transporter 4 in muscle, and increased storage of glycogen in the liver to maintain glucose homeostasis. HucMSC-ex inhibited STZ-induced β-cell apoptosis to restore the insulin-secreting function of T2DM. Taken together, exosomes from hucMSC can alleviate T2DM by reversing peripheral insulin resistance and relieving β-cell destruction, providing an alternative approach for T2DM treatment.
The antitumor effect of prostaglandin D2 (PGD2) on gastric cancer (GC) has been known for decades. However, the mechanism of PGD2's control of GC growth is unclear. Cancer stem cells (CSCs) are implicated in tumor neovascularization, invasiveness, and therapeutic resistance. Herein, we discovered that signaling between PGD2 and its receptor (PTGDR2) has the ability to restrict the self-renewal of GC cells in vitro and suppress tumor growth and metastasis in vivo. To obtain these findings, we first determined that PGD2 synthase (L-PTGDS) and PTGDR2 expression were lower in GC tissues than adjacent tissues and was associated with the patients' prognosis. Moreover, the expression of L-PTGDS and PTGDR2 was negatively correlated with the GC-CSC markers Sall4 and Lgr5 in GC tissues. Second, L-PTGDS and PTGDR2 expression were knocked down in CSC-like cells, resulting in enhanced expression of CSC markers and self-renewal ability. Direct PGD2 stimulation and L-PTGDS overexpression produced the opposite effect. Thirdly, PGD2 inhibited tumor growth and incidence rate in a subcutaneous tumor model and suppressed liver and mesenteric metastasis in a peritoneal metastasis model. Interfering with the expression of PTGDR2 reversed these effects in vivo. Last, a mechanistic study found that PGD2 inhibited STAT3 phosphorylation and nuclear expression. Further experiments revealed that the inhibitory effect of PGD2 on the expression of CSC markers disappeared after mutations were introduced into STAT3 phosphorylation (Thr705) site. In short, this study reveals a novel function of PGD2/PTGDR2 signaling on CSC regulation and provides a new way to control the development of GC. Stem Cells 2018;36:990-1003.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.