Acyl activating enzyme 3 (AAE3) was identified as being involved in the acetylation pathway of oxalate degradation, which regulates the responses to biotic and abiotic stresses in various higher plants. Here, we investigated the role of Glycine sojaAAE3 (GsAAE3) in Cadmium (Cd) and Aluminum (Al) tolerances. The recombinant GsAAE3 protein showed high activity toward oxalate, with a Km of 105.10 ± 12.30 μM and Vmax of 12.64 ± 0.34 μmol min−1 mg−1 protein, suggesting that it functions as an oxalyl–CoA synthetase. The expression of a GsAAE3–green fluorescent protein (GFP) fusion protein in tobacco leaves did not reveal a specific subcellular localization pattern of GsAAE3. An analysis of the GsAAE3 expression pattern revealed an increase in GsAAE3 expression in response to Cd and Al stresses, and it is mainly expressed in root tips. Furthermore, oxalate accumulation induced by Cd and Al contributes to the inhibition of root growth in wild soybean. Importantly, GsAAE3 overexpression increases Cd and Al tolerances in A. thaliana and soybean hairy roots, which is associated with a decrease in oxalate accumulation. Taken together, our data provide evidence that the GsAAE3-encoded protein plays an important role in coping with Cd and Al stresses.
Cadmium (Cd) is a widespread pollutant that is toxic to living organisms. Previous studies have identified certain WRKY transcription factors, which confer Cd tolerance in different plant species. In the present study, we have identified 29 Cd-responsive WRKY genes in Soybean [Glycine max (L.) Merr.], and confirmed that 26 of those GmWRKY genes were up-regulated, while 3 were down-regulated. We have also cloned the novel, positively regulated GmWRKY142 gene from soybean and investigated its regulatory mechanism in Cd tolerance. GmWRKY142 was highly expressed in the root, drastically up-regulated by Cd, localized in the nucleus, and displayed transcriptional activity. The overexpression of GmWRKY142 in Arabidopsis thaliana and soybean hairy roots significantly enhanced Cd tolerance and lead to extensive transcriptional reprogramming of stress-responsive genes. ATCDT1, GmCDT1-1, and GmCDT1-2 encoding cadmium tolerance 1 were induced in overexpression lines. Further analysis showed that GmWRKY142 activated the transcription of ATCDT1, GmCDT1-1, and GmCDT1-2 by directly binding to the W-box element in their promoters. In addition, the functions of GmCDT1-1 and GmCDT1-2, responsible for decreasing Cd uptake, were validated by heterologous expression in A. thaliana. Our combined results have determined GmWRKYs to be newly discovered participants in response to Cd stress, and have confirmed that GmWRKY142 directly targets ATCDT1, GmCDT1-1, and GmCDT1-2 to decrease Cd uptake and positively regulate Cd tolerance. The GmWRKY142-GmCDT1-1/2 cascade module provides a potential strategy to lower Cd accumulation in soybean.
Map-based cloning identified GmHAD1, a gene which encodes a HAD-like acid phosphatase, associated with soybean tolerance to low phosphorus stress. Phosphorus (P) deficiency in soils is a major limiting factor for crop growth worldwide. Plants may adapt to low phosphorus (LP) conditions via changes to root morphology, including the number, length, orientation, and branching of the principal root classes. To elucidate the genetic mechanisms for LP tolerance in soybean, quantitative trait loci (QTL) related to root morphology responses to LP were identified via hydroponic experiments. In total, we identified 14 major loci associated with these traits in a RIL population. The log-likelihood scores ranged from 2.81 to 7.43, explaining 4.23-13.98% of phenotypic variance. A major locus on chromosome 08, named qP8-2, was co-localized with an important P efficiency QTL (qPE8), containing phosphatase genes GmACP1 and GmACP2. Another major locus on chromosome 10 named qP10-2 explained 4.80-13.98% of the total phenotypic variance in root morphology. The qP10-2 contains GmHAD1, a gene which encodes an acid phosphatase. In the transgenic soybean hairy roots, GmHAD1 overexpression increased P efficiency by 8.4-16.5% relative to the control. Transgenic Arabidopsis plants had higher biomass than wild-type plants across both short- and long-term P reduction. These results suggest that GmHAD1, an acid phosphatase gene, improved the utilization of organic phosphate by soybean and Arabidopsis plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.