Discriminating marsh vegetation is critical for the rapid assessment and management of wetlands. The study area, Honghe National Nature Reserve (HNNR), a typical freshwater wetland, is located in Northeast China. This study optimized the parameters (mtry and ntrees) of an object-based random forest (RF) algorithm to improve the applicability of marsh vegetation classification. Multidimensional datasets were used as the input variables for model training, then variable selection was performed on the variables to eliminate redundancy, which improved classification efficiency and overall accuracy. Finally, the performance of a new generation of Chinese high-spatial-resolution Gaofen-1 (GF-1) and Ziyuan-3 (ZY-3) satellite images for marsh vegetation classification was evaluated using the improved object-based RF algorithm with accuracy assessment. The specific conclusions of this study are as follows: (1) Optimized object-based RF classifications consistently produced more than 70.26% overall accuracy for all scenarios of GF-1 and ZY-3 at the 95% confidence interval. The performance of ZY-3 imagery applied to marsh vegetation mapping is lower than that of GF-1 imagery due to the coarse spatial resolution. (2) Parameter optimization of the object-based RF algorithm effectively improved the stability and classification accuracy of the algorithm. After parameter adjustment, scenario 3 for GF-1 data had the highest classification accuracy of 84% (ZY-3 is 74.72%) at the 95% confidence interval. (3) The introduction of multidimensional datasets improved the overall accuracy of marsh vegetation mapping, but with many redundant variables. Using three variable selection algorithms to remove redundant variables from the multidimensional datasets effectively improved the classification efficiency and overall accuracy. The recursive feature elimination (RFE)-based variable selection algorithm had the best performance. (4) Optical spectral bands, spectral indices, mean value of green and NIR bands in textural information, DEM, TWI, compactness, max difference, and shape index are valuable variables for marsh vegetation mapping. (5) GF-1 and ZY-3 images had higher classification accuracy for forest, cropland, shrubs, and open water.
Background Fractional vegetation cover (FVC) is an important basic parameter for the quantitative monitoring of the alpine grassland ecosystem on the Qinghai-Tibetan Plateau. Based on unmanned aerial vehicle (UAV) acquisition of measured data and matching it with satellite remote sensing images at the pixel scale, the proper selection of driving data and inversion algorithms can be determined and is crucial for generating high-precision alpine grassland FVC products. Methods This study presents estimations of alpine grassland FVC using optimized algorithms and multi-dimensional features. The multi-dimensional feature set (using original spectral bands, 22 vegetation indices, and topographical factors) was constructed from many sources of information, then the optimal feature subset was determined based on different feature selection algorithms as the driving data for optimized machine learning algorithms. Finally, the inversion accuracy, sensitivity to sample size, and computational efficiency of the four machine learning algorithms were evaluated. Results (1) The random forest (RF) algorithm (R2: 0.861, RMSE: 9.5%) performed the best for FVC inversion among the four machine learning algorithms driven by the four typical vegetation indices. (2) Compared with the four typical vegetation indices, using multi-dimensional feature sets as driving data obviously improved the FVC inversion accuracy of the four machine learning algorithms (R2 of the RF algorithm increased to 0.890). (3) Among the three variable selection algorithms (Boruta, sequential forward selection [SFS], and permutation importance-recursive feature elimination [PI-RFE]), the constructed PI-RFE feature selection algorithm had the best dimensionality reduction effect on the multi-dimensional feature set. (4) The hyper-parameter optimization of the machine learning algorithms and feature selection of the multi-dimensional feature set further improved FVC inversion accuracy (R2: 0.917 and RMSE: 7.9% in the optimized RF algorithm). Conclusion This study provides a highly precise, optimized algorithm with an optimal multi-dimensional feature set for FVC inversion, which is vital for the quantitative monitoring of the ecological environment of alpine grassland.
Abstract. To conserve and manage wetland resources, it is important to monitor hydro-geomorphic condition. In this paper, the interferometric SAR images of L-band ALOS-1 PALSAR, C-band Sentinel-1A and X-band TerraSAR were selected to produce DEM of wetland area in the Honghe National Nature Reserve using the InSAR technique. 111 testing points randomly selected from the 1:10000 topographic map were utilized to evaluate accuracy of remote-sensing based DEM. Finally, the interference coherence difference of wetland vegetation among three different wavelengths was compared and analyzed. The results showed that The DEM of wetland area produced by L-band ALOS-1 PALSAR interferometric images was in good agreement with the 1:10,000 topographic map data. The elevation value with the difference less than 3 meters account for over 76% of all testing points. The coherence coefficient of wetland calculated from PALSAR images was higher than Sentinel-1A and TerraSAR images. The coherence coefficient among wetland vegetation types was significantly different. The distribution area of forest and shrub-grass vegetation had a larger coherence coefficient than shallow-water marsh vegetation area and deep-water marsh vegetation area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.