Precipitable Water Vapor (PWV), as an important indicator of atmospheric water vapor, can be derived from Global Navigation Satellite System (GNSS) observations with the advantages of high precision and all-weather capacity. GNSS-derived PWV with a high spatiotemporal resolution has become an important source of observations in meteorology, particularly for severe weather conditions, for water vapor is not well sampled in the current meteorological observing systems. In this study, an empirical atmospheric weighted mean temperature (Tm) model for Guilin is established using the radiosonde data from 2012 to 2017. Then, the observations at 11 GNSS stations in Guilin are used to investigate the spatiotemporal features of GNSS-derived PWV under the heavy rainfalls from June to July 2017. The results show that the new Tm model in Guilin has better performance with the mean bias and Root Mean Square (RMS) of − 0.51 and 2.12 K, respectively, compared with other widely used models. Moreover, the GNSS PWV estimates are validated with the data at Guilin radiosonde station. Good agreements are found between GNSS-derived PWV and radiosonde-derived PWV with the mean bias and RMS of − 0.9 and 3.53 mm, respectively. Finally, an investigation on the spatiotemporal characteristics of GNSS PWV during heavy rainfalls in Guilin is performed. It is shown that variations of PWV retrieved from GNSS have a direct relationship with the in situ rainfall measurements, and the PWV increases sharply before the arrival of a heavy rainfall and decreases to a stable state after the cease of the rainfall. It also reveals the moisture variation in several regions of Guilin during a heavy rainfall, which is significant for the monitoring of rainfalls and weather forecast.
Tropospheric delay is a major error source in the Global Navigation Satellite System (GNSS), and the weighted mean temperature (Tm) is a key parameter in precipitable water vapor (PWV) retrieval. Although reanalysis products like the National Centers for Environmental Prediction (NCEP) and the European Center for Medium-Range Weather Forecasts (ECMWF) Re-Analysis-Interim (ERA-Interim) data have been used to calculate and model the tropospheric delay, Tm, and PWV, the limitations of the temporal and spatial resolutions of the reanalysis data have affected their performance. The release of the fifth-generation accurate global atmospheric reanalysis (ERA5) and the second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) provide the opportunity to overcome these limitations. The performances of the zenith tropospheric delay (ZTD), zenith wet delay (ZWD), Tm, and zenith hydrostatic delay (ZHD) of ERA5 and MERRA-2 data from 2016 to 2017 were evaluated in this work using GNSS ZTD and radiosonde data over the globe. Taking GNSS ZTD as a reference, the ZTD calculated from MERRA-2 and ERA5 pressure-level data were evaluated in temporal and spatial scales, with an annual mean bias and root mean square (RMS) of 2.3 and 10.9 mm for ERA5 and 4.5 and 13.1 mm for MERRA-2, respectively. Compared to radiosonde data, the ZHD, ZWD, and Tm derived from ERA5 and MERRA-2 data were also evaluated on temporal and spatial scales, with annual mean bias values of 1.1, 1.7 mm, and 0.14 K for ERA5 and 0.5, 4.8 mm, and –0.08 K for MERRA-2, respectively. Meanwhile, the annual mean RMS was 4.5, 10.5 mm, and 1.03 K for ERA5 and 4.4, 13.6 mm, and 1.17 K for MERRA-2, respectively. Tropospheric parameters derived from MERRA-2 and ERA5, with improved temporal and spatial resolutions, can provide a reference for GNSS positioning and PWV retrieval.
With the increasing application of global navigation satellite system (GNSS) technology in the field of meteorology, satellite-derived zenith tropospheric delay (ZTD) and precipitable water vapor (PWV) data have been used to explore the spatial coverage pattern of PM2.5 concentrations. In this study, the PM2.5 concentration data obtained from 340 PM2.5 ground stations in south-central China were used to analyze the variation patterns of PM2.5 in south-central China at different time periods, and six PM2.5 interpolation models were developed in the region. The spatial and temporal PM2.5 variation patterns in central and southern China were analyzed from the perspectives of time series variations and spatial distribution characteristics, and six types of interpolation models were established in central and southern China. (1) Through correlation analysis, and exploratory regression and geographical detector methods, the correlation analysis of PM2.5-related variables showed that the GNSS-derived PWV and ZTD were negatively correlated with PM2.5, and that their significances and contributions to the spatial analysis were good. (2) Three types of suitable variable combinations were selected for modeling through a collinearity diagnosis, and six types of models (geographically weighted regression (GWR), geographically weighted regression kriging (GWRK), geographically weighted regression—empirical bayesian kriging (GWR-EBK), multiscale geographically weighted regression (MGWR), multiscale geographically weighted regression kriging (MGWRK), and multiscale geographically weighted regression—empirical bayesian kriging (MGWR-EBK)) were constructed. The overall R2 of the GWR-EBK model construction was the best (annual: 0.962, winter: 0.966, spring: 0.926, summer: 0.873, and autumn: 0.908), and the interpolation accuracy of the GWR-EBK model constructed by inputting ZTD was the best overall, with an average RMSE of 3.22 μg/m3 recorded, while the GWR-EBK model constructed by inputting PWV had the highest interpolation accuracy in winter, with an RMSE of 4.5 μg/m3 recorded; these values were 2.17% and 4.26% higher than the RMSE values of the other two types of models (ZTD and temperature) in winter, respectively. (3) The introduction of the empirical Bayesian kriging method to interpolate the residuals of the models (GWR and MGWR) and to then correct the original interpolation results of the models was the most effective, and the accuracy improvement percentage was better than that of the ordinary kriging method. The average improvement ratios of the GWRK and GWR-EBK models compared with that of the GWR model were 5.04% and 14.74%, respectively, and the average improvement ratios of the MGWRK and MGWR-EBK models compared with that of the MGWR model were 2.79% and 12.66%, respectively. (4) Elevation intervals and provinces were classified, and the influence of the elevation and the spatial distribution of the plane on the accuracy of the PM2.5 regional model was discussed. The experiments showed that the accuracy of the constructed regional model decreased as the elevation increased. The accuracies of the models in representing Henan, Hubei and Hunan provinces were lower than those of the models in representing Guangdong and Guangxi provinces.
Abstract. Atmospheric particulate matter is one of the most harmful pollutants in the atmospheric environment, and has an important impact on climate change, reduced visibility, environmental hazards (such as acid rain, smoke) and health hazards. PM2.5 is the main factor causing haze weather, reducing visibility and affecting traffic safety. PM2.5 enters the alveoli through the respiratory tract and endangers human health. The basic characteristics of PM2.5 are small size, light weight, long residence time in the atmosphere, and can be transported to a long distance by the atmospheric circulation, causing a wide range of air pollution.In 2018, the proportion of days with excellent and good air quality in Guilin City in January and February was 71.2%, ranking 10th among the 14 cities in the Guangxi Autonomous Region. As a famous tourist city, its air quality should be paid more attention. The main air pollutant in Guilin City is PM2.5, which refers to fine particles with a diameter of 2.5 μm or less in the air, it has great harm to human health and reduces the visibility of the atmosphere. Air quality data, meteorological data, and GPS tropospheric delay data (ZTD: zenith tropospheric delay) were collected to calculate the correlation between PM2.5 concentration and influencing factors by the gray correlation model, and the relationship between the main influencing factors and the variation characteristics of PM2.5 concentration was analyzed. The result shows that PM2.5 has strong correlation with other air pollutants SO2, NO2, wind direction, relative humidity, ZTD, temperature and wind speed; moderately correlated with rainfall and pressure. The degree of gray correlation between the impact factor and PM2.5 varies with the seasons.Based on this research and analysis, air quality pollutants and meteorological factors are used as input factors and the concentration of PM2.5 values as the output factor of the neural network model. The model is trained by training sample data to establish a neural network model to predict the concentration value of PM2.5 in Guilin. The accuracy of the model is verified by the accuracy index. The summer neural network model has the best precision. The MAE is 4.51 μg/m3, the RMSE is 5.73 μg/m3, and the MRE is 15.1%. The correlation coefficient between the predicted value and the measured value reaches 0.908. It shows that the neural network model based on meteorological factors and ZTD has a good predictive effect and has certain guiding significance for the prevention and control of air pollution in Guilin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.