A quantitative understanding of changes in water resources is crucial for local governments to enable timely decision-making to maintain water security. Here, we quantified natural-and human-induced influences on the terrestrial water storage change (TWSC) in Sichuan, Southwest China, with intensive water consumption and climate variability, based on the data from the Gravity Recovery and Climate Experiment (GRACE) and its Follow-on (GRACE-FO) during 2003–2020. We combined the TWSC estimates derived from six GRACE/GRACE-FO solutions based on the uncertainties of each solution estimated from the generalized three-cornered hat method. Metrics of correlation coefficient and contribution rate (CR) were used to evaluate the influence of precipitation, evapotranspiration, runoff, reservoir storage, and total water consumption on TWSC in the entire region and its five economic regions. The results showed that a significant improvement in the fused TWSC was found compared to those derived from a single model. The increase in regional water storage with a rate of 3.83 ± 0.54 mm/a was more influenced by natural factors (CR was 53.17%) compared to human influence (CR was 46.83%). Among the factors, the contribution of reservoir storage was the largest (CR was 42.32%) due to the rapid increase in hydropower stations, followed by precipitation (CR was 35.16%), evapotranspiration (CR was 15.86%), total water consumption (CR was 4.51%), and runoff (CR was 2.15%). Among the five economic regions, natural influence on Chengdu Plain was the highest (CR was 48.21%), while human influence in Northwest Sichuan was the largest (CR was 61.37%). The highest CR of reservoir storage to TWSC was in Northwest Sichuan (61.11%), while the highest CRs of precipitation (35.16%) and evapotranspiration (15.86%) were both in PanXi region. The results suggest that TWSC in Sichuan is affected by natural factors and intense human activities, in particular, the effect of reservoir storage on TWSC is very significant. Our study results can provide beneficial help for the management and assessment of regional water resources.
With the increasing application of global navigation satellite system (GNSS) technology in the field of meteorology, satellite-derived zenith tropospheric delay (ZTD) and precipitable water vapor (PWV) data have been used to explore the spatial coverage pattern of PM2.5 concentrations. In this study, the PM2.5 concentration data obtained from 340 PM2.5 ground stations in south-central China were used to analyze the variation patterns of PM2.5 in south-central China at different time periods, and six PM2.5 interpolation models were developed in the region. The spatial and temporal PM2.5 variation patterns in central and southern China were analyzed from the perspectives of time series variations and spatial distribution characteristics, and six types of interpolation models were established in central and southern China. (1) Through correlation analysis, and exploratory regression and geographical detector methods, the correlation analysis of PM2.5-related variables showed that the GNSS-derived PWV and ZTD were negatively correlated with PM2.5, and that their significances and contributions to the spatial analysis were good. (2) Three types of suitable variable combinations were selected for modeling through a collinearity diagnosis, and six types of models (geographically weighted regression (GWR), geographically weighted regression kriging (GWRK), geographically weighted regression—empirical bayesian kriging (GWR-EBK), multiscale geographically weighted regression (MGWR), multiscale geographically weighted regression kriging (MGWRK), and multiscale geographically weighted regression—empirical bayesian kriging (MGWR-EBK)) were constructed. The overall R2 of the GWR-EBK model construction was the best (annual: 0.962, winter: 0.966, spring: 0.926, summer: 0.873, and autumn: 0.908), and the interpolation accuracy of the GWR-EBK model constructed by inputting ZTD was the best overall, with an average RMSE of 3.22 μg/m3 recorded, while the GWR-EBK model constructed by inputting PWV had the highest interpolation accuracy in winter, with an RMSE of 4.5 μg/m3 recorded; these values were 2.17% and 4.26% higher than the RMSE values of the other two types of models (ZTD and temperature) in winter, respectively. (3) The introduction of the empirical Bayesian kriging method to interpolate the residuals of the models (GWR and MGWR) and to then correct the original interpolation results of the models was the most effective, and the accuracy improvement percentage was better than that of the ordinary kriging method. The average improvement ratios of the GWRK and GWR-EBK models compared with that of the GWR model were 5.04% and 14.74%, respectively, and the average improvement ratios of the MGWRK and MGWR-EBK models compared with that of the MGWR model were 2.79% and 12.66%, respectively. (4) Elevation intervals and provinces were classified, and the influence of the elevation and the spatial distribution of the plane on the accuracy of the PM2.5 regional model was discussed. The experiments showed that the accuracy of the constructed regional model decreased as the elevation increased. The accuracies of the models in representing Henan, Hubei and Hunan provinces were lower than those of the models in representing Guangdong and Guangxi provinces.
In recent years, geographically weighted regression (GWR) models have been widely used to address the spatial heterogeneity and spatial autocorrelation of PM2.5, but these studies have not fully considered the effects of all potential variables on PM2.5 variation and have rarely optimized the models for residuals. Therefore, we first propose a modified GWR model based on principal component analysis (PCA-GWR), then introduce five different spatial interpolation methods of radial basis functions to correct the residuals of the PCA-GWR model, and finally construct five combinations of residual correction models to estimate regional PM2.5 concentrations. The results show that (1) the PCA-GWR model can fully consider the contributions of all potential explanatory variables to estimate PM2.5 concentrations and minimize the multicollinearity among explanatory variables, and the PM2.5 estimation accuracy and the fitting effect of the PCA-GWR model are better than the original GWR model. (2) All five residual correction combination models can better achieve the residual correction optimization of the PCA-GWR model, among which the PCA-GWR model corrected by Multiquadric Spline (MS) residual interpolation (PCA-GWRMS) has the most obvious accuracy improvement and more stable generalizability at different time scales. Therefore, the residual correction of PCA-GWR models using spatial interpolation methods is effective and feasible, and the results can provide references for regional PM2.5 spatial estimation and spatiotemporal mapping. (3) The PM2.5 concentrations in the study area are high in winter months (January, February, December) and low in summer months (June, July, August), and spatially, PM2.5 concentrations show a distribution of high north and low south.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.