Epstein-Barr virus (EBV) encodes for several enzymes that are involved in viral DNA replication. There is evidence that some viral proteins, by themselves, can induce immune dysregulation that may contribute to the pathophysiology of the virus infection. In this study, we focused on the EBV-encoded deoxyuridine triphosphate nucleotidohydrolase (dUTPase) and present the first evidence that the dUTPase is able to induce immune dysregulation in vitro as demonstrated by the inhibition of the replication of stimulated peripheral blood mononuclear cells (PBMCs) and the upregulation of several proinflammatory cytokines including TNF-alpha, IL-1beta, IL-8, IL-6, and IL-10 produced by unstimulated PBMCs treated with purified EBV-encoded dUTPase. Depletion of CD14-positive cells (monocytes) eliminated the cytokine profile induced by EBV dUTPase treatment. The data support the hypothesis that at least one protein of the EBV early antigen complex can induce immune dysregulation and may be involved in the pathophysiology of EBV-associated disease.
The addition of ApxIV to the multicomponent vaccine could enhance homologous and heterologous protection in mice and pigs, respectively, against challenge by A. pleuropneumoniae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.