Stress recognitions have been exploited in flexible sensors, and attracted considerable attention in the fields of electronic skins and intelligent robots towards artificial intelligence. Inspired by human skin, to identify...
Adaptive energy-scaling resistive switching with active response and self-regulation via controllable insulator–metal transition shows promise in energy-efficient devices.
Reversible insulator–metal transition (IMT) and structure phase change in vanadium dioxide (VO2) remain vital and challenging with complex polymorphs. It is always essential to understand the polymorphs that coexist in desired VO2 materials and their IMT behaviors. Different electrical properties and lattice alignments in VO2 (M) and VO2 (B) phases have enabled the creation of versatile functional devices. Here, we present polymorphous VO2 thin films with coexistent VO2 (M) and VO2 (B) phases and phase-dependent IMT behaviors. The presence of VO2 (B) phases may induce lattice distortions in VO2 (M). The plane spacing of (011)M in the VO2 (M) phase becomes widened, and the V-V and V-O vibrations shift when more VO2 (B) phase exists in the VO2 (M) matrix. Significantly, the coexisting VO2 (B) phases promote the IMT temperature of the polymorphous VO2 thin films. We expect that such coexistent polymorphs and IMT variations would help us to understand the microstructures and IMT in the desired VO2 materials and contribute to advanced electronic transistors and optoelectronic devices.
Oxygen defects are among essential issues and required to be manipulated in correlated electronic oxides with insulator-metal transition (IMT). Besides, surface and interface control are necessary but challenging in field-induced electronic switching towards advanced IMT-triggered transistors and optical modulators. Herein, we demonstrated reversible entropy-driven oxygen defect migrations and reversible IMT suppression in vanadium dioxide (VO 2 ) phase-change electronic switching. The initial IMT was suppressed with oxygen defects, which is caused by the entropy change during reversed surface oxygen ionosorption on the VO 2 nanostructures. This IMT suppression is reversible and reverts when the adsorbed oxygen extracts electrons from the surface and heals defects again. The reversible IMT suppression observed in the VO 2 nanobeam with M2 phase is accompanied by large variations in the IMT temperature. We also achieved irreversible and stable IMT by exploiting an Al 2 O 3 partition layer prepared by atomic layer deposition (ALD) to disrupt the entropy-driven defect migration. We expected that such reversible modulations would be helpful for understanding the origin of surface-driven IMT in correlated vanadium oxides, and constructing functional phase-change electronic and optical devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.