In this study, the spatial variations of soil water and heat under bare land (BL), natural snow (NS), compacted snow (CS) and thick snow (TS) treatments were analyzed. The relationship curve between soil temperature and water content conforms to the exponential filtering model, by means of the functional form of the model, it was defined as soil water and heat relation function model. On this basis, soil water and heat function models of 10, 20, 40, 60, 100, and 140 cm were established. Finally, a spatial variation law of the relationship effect was described based on analysising of the differences between the predicted and measured results. During freezing period, the effects of external factors on soil were hindered by snow cover. As the snow increased, the accuracy of the function model gradually improved. During melting period, infiltration by snowmelt affected the relationship between the soil temperature and moisture. With the increasing of snow, the accuracy of the function models gradually decreased. The relationship effects of soil water and heat increased with increasing depth within the frozen zone. In contrast, below the frozen layer, the relationship of soil water and heat was weaker, and the function models were less accurate.
To study the effect of straw mulching on soil water evaporation, it is necessary to measure soil water evaporation under different conditions of straw mulching during the soil thawing period. A field experiment was conducted in winter, and soil evaporation was measured using a microlysimeter on bare land (LD) and 4500 (GF4500), 9000 (GF9000) and 13500 kg/hm 2 (GF13500) straw mulch. The influence of different quantities of straw mulch on soil water evaporation during the thawing period was analyzed using the Mallat algorithm, statistical analysis and information cost function. The results showed that straw mulching could delay the thawing of the surface soil by 3-6 d, decrease the speed at which the surface soil thaws by 0.40-0.80 cm/d, delay the peak soil liquid water content, increase the soil liquid water content, reduce the cumulative evaporation by 2.70-7.40 mm in the thawing period, increase the range of soil evaporation by 0.04-0.10 mm in the early stage of the thawing period, and reduce the range of soil evaporation by 0.25-0.90 mm in the late stage of the thawing period. Straw mulching could reduce the range of and variation in soil evaporation and can reduce the effect of random factors on soil evaporation. When the amount of straw mulch exceeded 9000 kg/hm 2 , the effect of increasing the amount of straw mulch on daily soil water evaporation was small.
China is increasingly facing water-related problems, such as water scarcity, pollution, and overexploitation of groundwater. This paper discusses the water status in China and claims that governance is the cause of water-related problems. The structure of the current water management is analyzed to conclude that the control-command is a static approach which is less capable of dealing with the uncertainty in the water resources system. An adaptive governance frame is introduced, which highlights the learning process and participation. The learning process avoids making the same mistake twice and the participation ensures the diversity of information, which are both necessary for water resources management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.