An acidic environment is vital for the maintenance of cellular activities but can be affected tremendously during intervertebral disc degeneration (IVDD). The effect of changes in the acidity of the environment on human nucleus pulposus mesenchymal stem cells (NP-MSCs) is, however, unknown. Thus, this study aimed to observe the biological effects of acidic conditions mimicking a degenerated intervertebral disc on NP-MSCs in vitro. NP-MSCs were isolated from patients with lumbar disc herniation and were further identified by their immunophenotypes and multilineage differentiation. Then, cells were cultured at acidic pH levels (pH 6.2, pH 6.5, pH 6.8, pH 7.1, and pH 7.4) with/without amiloride, an acid-sensing ion channel (ASIC) blocker. The proliferation and apoptosis of NP-MSCs and the expression of stem cell-related genes (Oct4, Nanog, Jagged, Notch1), ASICs, and functional genes (Aggrecan, SOX-9, Collagen-I, and Collagen-II) in NP-MSCs were evaluated. Our work showed that cells obtained from human degenerated NP met the criteria of International Society for Cellular Therapy. Therefore, cells obtained from a degenerated nucleus pulposus were definitively identified as NP-MSCs. Our results also indicated that acidic conditions could significantly inhibit cell proliferation and increase cell apoptosis. Gene expression results demonstrated that acidic conditions could decrease the expression of stem cell-related genes and inhibit extracellular matrix synthesis, whereas it could increase the expression of ASICs. Our study further verified that the above-mentioned biological activities of NP-MSCs could be significantly improved by amiloride. Therefore, the results of the study indicated that the biological behavior of NP-MSCs could be inhibited by acidic conditions during IVDD, and amiloride may meliorate IVDD by improving the activities of NP-MSCs.
Mutations within the Shank3 gene, which encodes a key postsynaptic density (PSD) protein at glutamatergic synapses, contribute to the genetic etiology of defined autism spectrum disorders (ASDs), including Phelan-McDermid syndrome (PMS) and intellectual disabilities (ID). Although there are a series of genetic mouse models to study Shank3 gene in ASDs, there are few rat models with species-specific advantages. In this study, we established and characterized a novel rat model with a deletion spanning exons 11–21 of Shank3 , leading to a complete loss of the major SHANK3 isoforms. Synaptic function and plasticity of Shank3 -deficient rats were impaired detected by biochemical and electrophysiological analyses. Shank3 -depleted rats showed impaired social memory but not impaired social interaction behaviors. In addition, impaired learning and memory, increased anxiety-like behavior, increased mechanical pain threshold and decreased thermal sensation were observed in Shank3 -deficient rats. It is worth to note that Shank3 -deficient rats had nearly normal levels of the endogenous social neurohormones oxytocin (OXT) and arginine-vasopressin (AVP). This new rat model will help to further investigate the etiology and assess potential therapeutic target and strategy for Shank3 -related neurodevelopmental disorders.
Background: Mesenchymal stem cells (MSCs) have become a promising treatment for spinal cord injury (SCI) due to the fact that they provide a favorable environment. Treatment using MSCs results in a better neurological functional improvement through the promotion of nerve cell regeneration and the modulation of inflammation. Many studies have highlighted that the beneficial effects of MSCs are more likely associated with their secreted factors. However, the identity of the factor that plays a key role in the MSC-induced neurological functional recovery following SCI as well as its molecular mechanism still remains unclear. Methods: A conditioned medium (collected from the MSCs) and hepatocyte growth factor (HGF) were used to test the effects on the differentiation of neural stem cells (NSCS) in the presence of BMP4 with or without a c-Met antibody. In SCI rats, Western blot, ELISA, immunohistochemistry, and hematoxylin-eosin staining were used to investigate the biological effects of MSC-conditioned medium and HGF on nerve cell regeneration and inflammation with or without the pre-treatment using a c-Met antibody. In addition, the possible molecular mechanism (cross-talk between HGF/c-Met and the BMP/Smad 1/5/8 signaling pathway) was also detected by Western blot both in vivo and in vitro. Results: The conditioned medium from bone marrow-derived MSCs (BMSCs) was able to promote the NSC differentiation into neurons in vitro and the neurite outgrowth in the scar boundary of SCI rats by inhibiting the BMP/Smad signaling pathway as well as reduces the secondary damage through the modulation of the inflammatory process. The supplementation of HGF showed similar biological effects to those of BMSC-CM, whereas a functional blocking of the c-Met antibody or HGF knockdown in BMSCs significantly reversed the functional improvement mediated by the BMSC-CM. Conclusions: The MSC-associated biological effects on the recovery of SCI rats mainly depend on the secretion of HGF.
Mesenchymal stem cells (MSCs) constitute a promising therapy for spinal cord injury (SCI) because they can provide a favorable environment for the regrowth of neurons by inhibiting receptor-regulated Smads (R-Smads) expression in endogenous neural stem cells (NSCs). However, their mechanism of action and effect on the expression of inhibitory Smads (I-Smads) remain unclear. Herein, we demonstrated that extracellular vesicles (EVs) from MSCs were able to upregulate the Smad 6 expression by carrying TGF-β, and the Smad 6 knockdown in NSCs partially weakened the bone marrow MSC (BMSC)-EV-induced effect on neural differentiation. We found that the expression of Smad 6 did not reduced owing to the TGF-β type I receptor kinase inhibitor, SB 431,542, treatment in the acute phase of injury in rats with SCI, thereby indicating that the Smad 6 expression was not only mediated by TGF-β, but also by the inflammatory factors and bone morphogenetic proteins (BMPs) as well. However, in the later phase of SCI, the Smad 6 expression decreased by the addition of SB 431,542, suggesting that TGF-β plays a key role in the mediation of Smad 6 expression in this phase. In addition, immunohistochemistry staining; hematoxylin–eosin staining; and the Basso, Beattie, and Bresnahan (BBB) scores revealed that the early inhibition of TGF-β did not increase neuron regrowth. However, this inhibition increased the cavity and the caspase-3 expression at 24 h post-injury, leading to a worse functional outcome. Conversely, the later treatment with the TGF-β inhibitor promoted the regrowth of neurons around the cavity, resulting in a better neurological outcome. Together, these results indicate that Smad 6 acts as a feedback regulator to prevent the over-differentiation of NSCs to astrocytes and that BMSC-EVs can upregulate Smad 6 expression by carrying TGF-β. Graphical abstract
The severity of CSM increased with increasing age. Age was inversely correlated with recovery, and recovery decreased as age increased. Six months post operation was the prime time for the recovery of spinal cord function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.