Transforming growth factor β (TGF-β) is critical for embryonic development, adult tissue homeostasis, and tumor progression. TGF-β suppresses tumors at early stage, but promotes metastasis at later stage through oncogenes such as Twist1. Gamma-synuclein (SNCG) is overexpressed in a variety of invasive and metastatic cancer. Here, we show that TGF-β induces SNCG expression by Smad-Twist1 axis, thus promoting TGF-β- and Twist1-induced cancer cell migration and invasion. We identify multiple Twist1-binding sites (E-boxes) in SNCG promoter. Chromatin immunoprecipitation and luciferase assays confirm the binding of Twist1 to the E-boxes of SNCG promoter sequence (−129/−1026 bp). Importantly, the Twist1-binding site close to the transcription initiation site is critical for the upregulation of SNCG expression by TGF-β and Twist1. Mutations of Twist1 motif on the SNCG promoter constructs markedly reduces the promoter activity. We further show that TGF-β induces Twist1 expression through Smad thereby enhancing the binding of Twist1 to SNCG promoter, upregulating SNCG promoter activity and increasing SNCG expression. SNCG knockdown abrogates TGF-β- or Twist1-induced cancer cell migration and invasion. Finally, SNCG knockdown inhibits the promotion of cancer metastasis by Twist1. Together, our data demonstrate that SNCG is a novel target of TGF-β-Smad-Twist1 axis and a mediator of Twist1-induced cancer metastasis.
Edited by Xiao-Fan Wang GADD34 (growth arrest and DNA damage-inducible gene 34) plays a critical role in responses to DNA damage and endoplasmic reticulum stress. GADD34 has opposing effects on different stimuli-induced cell apoptosis events, but the reason for this is unclear. Here, using immunoblotting analyses and various molecular genetic approaches in HepG2 and SMMC-7721 cells, we demonstrate that GADD34 protects hepatocellular carcinoma (HCC) cells from tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by stabilizing a BCL-2 family member, myeloid cell leukemia 1 (MCL-1). We found that GADD34 knockdown decreased MCL-1 levels and that GADD34 overexpression up-regulated MCL-1 expression in HCC cells. GADD34 did not affect MCL-1 transcription but enhanced MCL-1 protein stability. The proteasome inhibitor MG132 abrogated GADD34 depletion-induced MCL-1 downregulation, suggesting that GADD34 inhibits the proteasomal degradation of MCL-1. Furthermore, GADD34 overexpression promoted extracellular signal-regulated kinase (ERK) phosphorylation through a signaling axis that consists of the E3 ubiquitin ligase tumor necrosis factor receptor-associated factor 6 (TRAF6) and transforming growth factor--activated kinase 1 (MAP3K7)-binding protein 1 (TAB1), which mediated the upregulation of MCL-1 by GADD34. Of note, TRAIL up-regulated both GADD34 and MCL-1 levels, and knockdown of GADD34 and TRAF6 suppressed the induction of MCL-1 by TRAIL. Correspondingly, GADD34 knockdown potentiated TRAIL-induced apoptosis, and MCL-1 overexpression rescued TRAILtreated and GADD34-depleted HCC cells from cell death. Taken together, these findings suggest that GADD34 inhibits TRAIL-induced HCC cell apoptosis through TRAF6-and ERKmediated stabilization of MCL-1.
The natural agent rhein is an ananthraquinone derivative of rhubarb, which has anticancer effects. To determine the mechanisms underlying the anticancer effects of rhein, we detected the effect of rhein on several oncoproteins. Here, we show that rhein induces β‐catenin degradation in both hepatoma cell HepG2 and cervical cancer cell Hela. Treatment of HepG2 and Hela cells with rhein shortens the half‐life of β‐catenin. The proteasome inhibitor MG132 blunts the downregulation of β‐catenin by rhein. The induction of β‐catenin degradation by rhein is dependent on GSK3 but independent of Akt. Treatment of HepG2 and Hela cells with GSK3 inhibitor or GSK3β knockdown abrogates the effect of rhein on β‐catenin. GSK3β knockdown compromises the inhibition of HepG2 and Hela cell growth by rhein. Furthermore, rhein dose not downregulate β‐catenin mutant that is deficient of phosphorylation at multiple residues including Ser33, Ser37, Thr41 and Ser45. Moreover, rhein induces cell cycle arrest at S phase in both HepG2 and Hela cells. Intraperitoneal administration of rhein suppresses tumour cells proliferation and tumour growth in HepG2 xenografts model. Finally, the levels of β‐catenin are reduced in rhein‐treated tumours. These data demonstrate that rhein can induce β‐catenin degradation and inhibit tumour growth.
Proteasomes are essential for numerous cellular processes, including the cell cycle, regulation of gene expression and responses to cellular stress. Proteasome inhibitors are promising anticancer agents. The proteasome inhibitor bortezomib effectively suppresses certain types of cancer, including multiple myeloma and mantle cell lymphoma. However, bortezomib poorly inhibits solid tumors, including hepatocellular carcinoma. The activation of Akt represents an adaptive response that prevents bortezomib-induced cell apoptosis. In the present study, bortezomib induced phosphorylation of EGFR, Src and Akt in hepatoma cells and inhibition of Src reduced bortezomib-induced EGFR and Akt phosphorylation. Treatment of hepatoma cells with bortezomib led to an increase in the levels of intracellular reactive oxygen species (ROS). The ROS scavenger N-acetyl-L-cysteine inhibits bortezomib-induced ROS production and abrogates the phosphorylation of Src, epidermal growth factor receptor and Akt. The combination of bortezomib and saracatinib, a Src inhibitor, synergistically induced hepatoma cell apoptosis. The present study concluded that ROS mediated the activation of the Src-EGFR-Akt cascade by bortezomib. The combination of the Src inhibitor and bortezomib holds promise in the treatment of hepatocellular carcinoma.
AflatoxinB1 (AFB1) is well known as a potent carcinogen. Epidemiological studies have shown an association between AFB1 exposure and lung cancer in humans. AFB1 can induce the mutations of genes such as tumor suppressor p53 through its metabolite AFB1-8,9-exo-epoxide, which acts as a mutagen to react with DNA. In addition, recent study demonstrates AFB1 positively regulates type I insulin-like growth factor receptor (IGF-IR) signaling in hepatoma cells. The current study aims to determine the effects of AFB1 on Src kinase and insulin receptor substrate (IRS) in lung cancer cells and the effects of AFB1 on lung cancer cell migration. To this end, the effects of AFB1 on IRS expression, Src, Akt, and ERK phosphorylation were measured by Western blot analysis. The migration of lung cancer cells was detected by wound-healing assay. AFB1 downregulates IRS1 but paradoxically upregulates IRS2 through positive regulation of the stability of IRS2 and the proteasomal degradation of IRS1 in lung cancer cell lines A549 and SPCA-1. In addition, AFB1 induces Src, Akt, and ERK1/2 phosphorylation. Treatment of lung cancer cells with Src inhibitor saracatinib abrogates AFB1-induced IRS2 accumulation. Moreover, AFB1 stimulates lung cancer cell migration, which can be inhibited by saracatinib. We conclude that AFB1 may upregulate IRS2 and stimulate lung cancer cell migration through Src.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.