Motion tracklets are the basic fragments of the track followed by a moving object and constitute various everyday motion behavior. An accurate estimation of motion tracklets in 3-D space can enable a wide range of applications, ranging from human computer interaction to medical rehabilitation. This paper presents a novel dataset for accurate 6-DoF motion tracklet estimation with the inertial sensors on commodity smartphones. The dataset consists of around 100 minutes of handheld motion with 3 predominant types of motion tracklets and accurate ground truth using the Vicon systems. With the presented dataset, we further benchmarked the trajectory estimation using a lightweight neural odometry model, showcasing how the dataset can be used while providing quantitative performance for downstream tasks. Our dataset, toolkit and source code available at https://github.com/MAPS-Lab/smartphone-tracking-dataset.
CCS CONCEPTS• Computing methodologies → Neural networks; • Hardware → Sensor applications and deployments; • Human-centered computing → Ubiquitous and mobile computing systems and tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.