This paper presents an effective image retrieval method by combining high-level features from convolutional neural network (CNN) model and low-level features from dot-diffused block truncation coding (DDBTC). The low-level features, e.g., texture and color, are constructed by vector quantization -indexed histogram from DDBTC bitmap, maximum, and minimum quantizers. Conversely, high-level features from CNN can effectively capture human perception. With the fusion of the DDBTC and CNN features, the extended deep learning two-layer codebook features is generated using the proposed two-layer codebook, dimension reduction, and similarity reweighting to improve the overall retrieval rate. Two metrics, average precision rate and average recall rate (ARR), are employed to examine various data sets. As documented in the experimental results, the proposed schemes can achieve superior performance compared with the state-of-the-art methods with either low-or high-level features in terms of the retrieval rate. Thus, it can be a strong candidate for various image retrieval related applications.
Prostate cancer is one of the most common cancers in men. Early detection of prostate cancer is the key to successful treatment. Ultrasound imaging is one of the most suitable methods for the early detection of prostate cancer. Although ultrasound images can show cancer lesions, subjective interpretation is not accurate. Therefore, this paper proposes a transrectal ultrasound image analysis method, aiming at characterizing prostate tissue through image processing to evaluate the possibility of malignant tumours. Firstly, the input image is preprocessed by optical density conversion. Then, local binarization and Gaussian Markov random fields are used to extract texture features, and the linear combination is performed. Finally, the fused texture features are provided to SVM classifier for classification. The method has been applied to data set of 342 transrectal ultrasound images obtained from hospitals with an accuracy of 70.93%, sensitivity of 70.00%, and specificity of 71.74%. The experimental results show that it is possible to distinguish cancerous tissues from noncancerous tissues to some extent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.