Forest ecosystems maintain a large share of Northern Hemisphere biodiversity. Boreal forests comprise roughly 30% of global forest area 1 and contain the highest tree density among climate zones 2 . Moreover, boreal regions are undergoing extensive climate change. Annual temperature increases exceeding 1.5 °C are projected to result in a warming of 4-11 °C by the end of this century, with little concomitant increase in precipitation 1 . At this pace, climate zones will shift northward at a greater speed than trees can migrate 3 . To understand how future populations of forest trees may respond to climate change, it is essential to uncover past and present signatures of molecular adaptation in their genomes. Silver birch, B. pendula, is a pioneer species in boreal forests of Eurasia. Flowering of the species can be artificially accelerated 4 , giving it an advantage over other tree species with published genome sequences (such as poplar 5 , spruce 6 , and pine 7 ) for the optimization of fiber and biomass production.Here we sequenced 150 birch individuals and assembled a B. pendula reference genome from a fourth-generation inbred line, resulting in a high-quality assembly of 435 Mb that was linked to chromosomes using a dense genetic map. We analyzed SNPs in the genomes of 80 birch individuals spanning most of the geographic range of B. pendula, as well as seven other members of Betulaceae. Population genomic analyses of these data provide insights into the deep-time evolution of the birch family and on recent natural selection acting on silver birch.Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightlylinked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A.A full list of affiliations appears at the end of the paper.
To elucidate the contribution of dehydrins (DHNs) to freezing stress tolerance in Arabidopsis, transgenic plants overexpressing multiple DHN genes were generated. Chimeric double constructs for expression of RAB18 and COR47 (pTP9) or LTI29 and LTI30 (pTP10) were made by fusing the coding sequences of the respective DHN genes to the cauliflower mosaic virus 35S promoter. Overexpression of the chimeric genes in Arabidopsis resulted in accumulation of the corresponding dehydrins to levels similar or higher than in cold-acclimated wild-type plants. Transgenic plants exhibited lower LT 50 values and improved survival when exposed to freezing stress compared to the control plants. Post-embedding immuno electron microscopy of high-pressure frozen, freeze-substituted samples revealed partial intracellular translocation from cytosol to the vicinity of the membranes of the acidic dehydrin LTI29 during cold acclimation in transgenic plants. This study provides evidence that dehydrins contribute to freezing stress tolerance in plants and suggests that this could be partly due to their protective effect on membranes.
A cDNA clone corresponding to a novel low-temperature-induced Arabidopsis thaliana gene, named lti140, was employed for studies of the environmental signals and the signal pathways involved in cold-induced gene expression. The single-copy lti140 gene encodes a 140 kDa cold acclimation-related polypeptide. The lti140 mRNA accumulates rapidly in both leaves and roots when plants are subject to low temperature or water stress or are treated with the plant hormone abscisic acid (ABA), but not by heat-shock treatment. The low-temperature induction of lti140 is not mediated by ABA, as shown by normal induction of the lti140 mRNA in both ABA-deficient and ABA-insensitive mutants and after treatment with the ABA biosynthesis inhibitor fluridone. The effects of low temperature and exogenously added ABA are not cumulative suggesting that these two pathways converge. The induction by ABA is abolished in the ABA-insensitive mutant abi-1 indicating that the abi-1 mutation defines a component in the ABA response pathway. Accumulation of the lti140 mRNA in plants exposed to water stress was somewhat reduced by treatment with fluridone and in the ABA-insensitive mutant abi-1 suggesting that the water stress induction of ltil40 could be partly mediated by ABA. It is concluded that three separate but converging signal pathways regulate the expression of the ltil40 gene.
EARLY RESPONSIVE TO DEHYDRATION 15 (ERD15) is rapidly induced in response to various abiotic and biotic stress stimuli in Arabidopsis (Arabidopsis thaliana). Modulation of ERD15 levels by overexpression or RNAi silencing altered the responsiveness of the transgenic plants to the phytohormone abscisic acid (ABA). Overexpression of ERD15 reduced the ABA sensitivity of Arabidopsis manifested in decreased drought tolerance and in impaired ability of the plants to increase their freezing tolerance in response to this hormone. In contrast, RNAi silencing of ERD15 resulted in plants that were hypersensitive to ABA and showed improved tolerance to both drought and freezing, as well as impaired seed germination in the presence of ABA. The modulation of ERD15 levels not only affected abiotic stress tolerance but also disease resistance: ERD15 overexpression plants showed improved resistance to the bacterial necrotroph Erwinia carotovora subsp. carotovora accompanied with enhanced induction of marker genes for systemic acquired resistance. We propose that ERD15 is a novel mediator of stress-related ABA signaling in Arabidopsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.