Forest inventories based on airborne laser scanning (ALS) have already become common practice in the Nordic countries. One possibility for improving their cost effectiveness is to use existing field data sets as training data. One alternative in Finland would be the use of National Forest Inventory (NFI) sample plots, which are truncated angle count (relascope) plots. This possibility is tested here by using a training data set based on measurements similar to the Finnish NFI. Tree species-specific stand attributes were predicted by the non-parametric k most similar neighbour (k-MSN) approach, utilising both ALS and aerial photograph data. The stand attributes considered were volume, basal area, stem number, mean age of the tree stock, diameter and height of the basal area median tree, determined separately for Scots pine, Norway spruce and deciduous trees. The results obtained were compared with those obtained when using training data based on observations from fixed area plots with the same centre point location as the NFI plots. The results indicated that the accuracy of the estimates of stand attributes derived by using NFI training data was close to that of the fixed area plot training data but that the NFI sampling scheme and the georeferencing of the plots can cause problems in practical applications.
t u t k i m u s a r t i k k e l i
Pekka HyvönenKuvioittaisten puustotunnusten ja toimenpide-ehdotusten estimointi k-lähimmän naapurin menetelmällä Landsat TM -satelliittikuvan, vanhan inventointitiedon ja kuviotason tukiaineiston avulla Hyvönen, P. 2002. Kuvioittaisten puustotunnusten ja toimenpide-ehdotusten estimointi k-lähimmän naapurin menetelmällä Landsat TM -satelliittikuvan, vanhan inventointitiedon ja kuviotason tukiaineiston avulla. Metsätieteen aikakauskirja 3/2002: 363-379.Tutkimuksessa tarkasteltiin Landsat TM -satelliittikuvan käyttökelpoisuutta puustotietojen sekä toimenpide-ehdotusten estimoimiseksi metsikkökuvioille ja segmenteille ei parametrisella k-lähimmän naapurin menetelmällä (knn). Satelliittikuvan informaation ohella estimoinnissa hyödynnettiin vanhan inventoinnin mukaisia puustotietoja. Tutkimuksessa vertailtiin myös satelliittikuvan sävyarvoista eri tavoin laskettujen keskiarvojen tehokkuutta estimoinnissa. Estimoinnin tukiaineisto koostui 935 kuviosta ja kohdeaineisto 921 kuviosta.Paras estimointitulos saatiin käyttämällä satelliittikuvan informaationa kuvioiden ydinosien keskiarvosävyjä ja kuvioiden reunaetäisyydellä painotettujen sävyarvojen keskiarvoja sekä vanhaa inventointitietoa. Puuston keskitilavuuden keskivirheeksi saatiin 42,1 % (51,6 m 3 ha -1 ). Tarkimmin estimoitiin puuston keskiläpimitta (keskivirhe 32,3 % (5,4 cm)), sekä keskipituus (keskivirhe 34,1 % (4,6 m)). Nuorissa ja varttuneissa kasvatusmetsissä vastaavat keskivirheet olivat noin 10 %-yksikköä pienemmät kuin koko aineistossa keskimäärin. Segmenttiestimoinnissa suhteelliset keskivirheet olivat 10-15 %-yksikköä vastaavia metsikköestimointeja suuremmat.Toimenpide-ehdotusten luokittelussa kasvatushakkuiden oikeinluokitusprosentiksi saatiin 61,3 % ja uudistamishakkuiden 64,1 %. Hoitotoimenpide-ehdotusten luokittelussa koko aineiston oikeinluokitusprosentti oli 71,2 %.Tutkimuksessa testattu menetelmä tarjoaa nopean ja edullisen vaihtoehdon puustotunnusten ja toimenpide-ehdotusten tuottamiseksi esimerkiksi välialueiden suunnitteluun.
In Finland, there are currently two, parallel sample-plot-based forest inventory systems, which differ in their methodologies, sampling designs, and objectives. One is the National Forest Inventory (NFI), aimed at unbiased inventory results at national and regional level. The other is the Forest Centre's management-oriented forest inventory based on interpretation of airborne laser scanning and aerial images, with the aim of locally accurate stand-level forest estimates. The National Forest Inventory utilises relascope sample plots with systematic cluster sampling. This inventory method is optimised for accuracy of regional volume estimates. In contrast, the management-oriented forest inventory utilises circular sample plots with an allocation system covering certain pre-defined forest classes in the inventory area. This method is optimised to produce reference data for interpretation of the remote-sensing materials in use. In this study, we tested the feasibility of the National Forest Inventory sample plots in provision of additional reference data for the management-oriented inventory. Various combinations of NFI plots and management inventory plots were tested in the interpretation of the laser and aerial-image data. Adding NFI plots in the reference data generally improved the accuracy of the volume estimates by tree species but not the estimates of total volume or stand mean height and diameter. The difference between the plot types in the NFI and management inventories causes difficulties in combination of the two datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.