Vastly different folded transmembrane segments of nascent multispanning membrane proteins each induce structural changes in the ribosome tunnel and translocon that target the loops of the growing polypeptide alternately into the cytosol or ER lumen.
SUMMARY
Most membrane proteins are integrated cotranslationally into the ER membrane at the translocon where nonpolar nascent protein transmembrane segments (TMSs) are widely believed to partition directly into the nonpolar membrane interior. However, a FRET approach that monitors the separation between a fluorescent-labeled TMS and fluorescent phospholipids diffusing in the bulk lipid reveals that TMSs do not immediately enter the lipid phase of the membrane. Instead, TMSs are retained at the translocon by protein-protein interactions until their release into bulk lipid is triggered by translation termination or, in some cases, by the arrival of another nascent chain TMS at a translocon. Nascent chain status and structural elements therefore dictate the timing of TMS release into the lipid phase by altering TMS and flanking sequence interactions with translocons, ribosomes, and associated proteins, thereby controlling when successive TMSs assemble in the bilayer and TMS-delineated loops fold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.