It is well established that the notochord influences the development of adjacent neural and mesodermal tissue. Involvement of the notochord in the differentiation of the dorsal pancreas has been demonstrated. However, our knowledge of the signals involved in pancreatic development is still incomplete. In order to identify proteins potentially implicated during pancreatic differentiation, we raised and characterized monoclonal antibodies against previously established embryonic pancreatic ductal epithelial cell lines (BUD and RED). Using the MAb 2117, the cell surface antigen 2117 (Ag 2117) was cloned. The predicted sequence for Ag 2117 is the rat homologue of BEN. Initially reported as a protein expressed on epithelial cells of the chicken bursa of Fabricius, BEN is expressed in a variety of tissues during development and described as a marker for the developing central and peripheral chicken nervous systems. A role has been suggested for BEN in the adhesion of stem cells and progenitor cells to the blood-forming tissue microenvironment. In this study, we demonstrate that BEN, initially expressed exclusively in the notochord during the early development of rat, is implicated in pancreatic development. We show that Ag 2117 regulates the pancreatic epithelial cell growth through the ras and Jun kinase pathways. In addition, we demonstrate that Ag 2117 is able to regulate the expression of the transcription factor PDX1, required for insulin gene expression, in embryonic pancreas organ cultures.
The high affinity activin-binding protein, follistatin, has recently been shown to block activin-stimulated activities in several in vitro systems. In the present study we sought to extend these observations and investigate the effects of follistatin on the activity of activin in stimulating the re-aggregation of Sertoli cell monolayers and proliferation of testicular germ cells, as measured by incorporation of [3H]-thymidine in vitro. Germ-Sertoli cell cocultures prepared from 21 day old rats were treated with media alone or media containing recombinant human (rh) activin A or rh activin B with or without follistatin, the low affinity activin-binding protein, alpha 2 macroglobulin, or a monoclonal antibody (mAB) known to block activin B activity. Follistatin blocked the ability of activin A to stimulate reaggregation of Sertoli cell monolayers when present at a 2-fold ratio (wt/wt) to activin. However, in these same cultures, follistatin had no effect on the ability of activin A to stimulate [3H]-thymidine incorporation. In activin B-treated cultures, both responses could be blocked by the addition of a neutralizing mAB directed against activin B. These results suggest that follistatin can modulate activin action in a cell-type specific fashion, and that this protein may play an important role in regulating the bioavailability of activin.
The human epidermal growth factor receptor (HER or ErbB) family consists of four distinct members, including the epidermal growth factor (EGF) receptor (EGFR, HER1, or ErbB1), ErbB2 (HER2 or neu), ErbB3 (HER3), and ErbB4 (HER4). Activation of these receptors plays an important role in the regulation of cell proliferation, differentiation, and survival in several different tissues. Binding of a specific ligand to one of the ErbB receptors triggers the formation of specific receptor homo- and heterodimers, with ErbB2 being the preferred signaling partner. We analyzed the levels of various ErbB receptor messenger RNAs in a series of nontransformed cell lines by real time quantitative RT-PCR. The cell lines chosen were derived from a variety of tissues, including pancreas, lung, heart, and nervous system. Further, we measured biological responses in these cell lines upon treatment with EGF, betacellulin, and two types of neuregulins, heregulin and sensory and motor neuron-derived factor. All cell lines examined expressed detectable levels of ErbB2. High levels of expression of ErbB3 were correlated with responsiveness to heregulin and sensory and motor neuron-derived factor, whereas high levels of EGFR expression were correlated with responsiveness to EGF and betacellulin. Moreover, the sensitivity of a cell line to ErbB ligands was also correlated with the levels of expression of the appropriate ErbB receptors in that cell line. These results are consistent with our hypothesis that appropriate biological responsiveness to ErbB ligands is determined by the levels of expression of specific ErbB receptor combinations within a given tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.