Over the past few years, dictionary learning (DL)based methods have been successfully used in various image reconstruction problems. However, traditional DL-based computed tomography (CT) reconstruction methods are patch-based and ignore the consistency of pixels in overlapped patches. In addition, the features learned by these methods always contain shifted versions of the same features. In recent years, convolutional sparse coding (CSC) has been developed to address these problems. In this paper, inspired by several successful applications of CSC in the field of signal processing, we explore the potential of CSC in sparse-view CT reconstruction. By directly working on the whole image, without the necessity of dividing the image into overlapped patches in DL-based methods, the proposed methods can maintain more details and avoid artifacts caused by patch aggregation. With predetermined filters, an alternating scheme is developed to optimize the objective function. Extensive experiments with simulated and real CT data were performed to validate the effectiveness of the proposed methods. Qualitative and quantitative results demonstrate that the proposed methods achieve better performance than several existing state-of-the-art methods.
The ability to model and predict the popularity dynamics of individual user generated items on online media has important implications in a wide range of areas. In this paper, we propose a probabilistic model using a Self-Excited Hawkes Process (SEHP) to characterize the process through which individual microblogs gain their popularity. This model explicitly captures the triggering effect of each forwarding, distinguishing itself from the reinforced Poisson process based model where all previous forwardings are simply aggregated as a single triggering effect. We validate the proposed model by applying it on Sina Weibo, the most popular microblogging network in China. Experimental results demonstrate that the SEHP model consistently outperforms the model based on reinforced Poisson process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.