Adamantanes (amantadine and rimantadine) have been used to prevent and treat influenza A virus infections for many years; however, resistance to these drugs has been widely reported in the world. To investigate the frequency and distribution of M2 gene mutations in adamantane-resistant influenza variants circulated in the world between 1902 and 2013, 31251 available M2 protein sequences from different HA-subtype influenza A viruses (H1–H17) were analyzed and adamantane resistance-associated mutations were compared (L26F, V27A, A30T, A30V, S31N, G34E, and L38F). We find that 45.2% (n = 14132) of influenza A (H1–H17) viruses circulating globally were resistant to adamantanes, and the vast majority of resistant viruses (95%) bear S31N mutations. Whereas, only about 1% have V27A mutations and other mutations (L26F, A30T, G34E, and L38F) were extremely rare (their prevalence appeared to be < 0.2%). Our results confirm that H1, H3, H5, H7, H9, and H17 subtype influenza A viruses exhibit high-level resistance to adamantanes. In contrast, the appearance of adamantane-resistant mutants in H2, H4, H6, H10, and H11 subtypes was rare. However, no adamantane resistance viruses were identified among other HA subtypes (H8, H12–H16). Our findings indicate that the frequency and distribution of adamantane-resistant influenza variants varied among different HA subtypes, host species, years of isolation, and geographical areas. This comprehensive study raises concerns about the increasing prevalence of adamantane-resistant influenza A viruses and highlights the importance of monitoring the emergence and worldwide spread of adamantane-resistant variants.
We have examined the myogenic potential of human embryonic stem (hES) cells in a xeno-transplantation animal model. Here we show that precursors differentiated from hES cells can undergo myogenesis in an adult environment and give rise to a range of cell types in the myogenic lineage. This study provides direct evidences that hES cells can regenerate both muscle and satellite cells in vivo and are another promising cell type for treating muscle degenerative disorders in addition to other myogenic cell types.
BackgroundIt is now recognized that asthma can present in different forms. Typically, asthma present with symptoms of wheeze, breathlessness and cough. Atypical forms of asthma such as cough variant asthma (CVA) or chest tightness variant asthma (CTVA) do not wheeze. We hypothesize that these different forms of asthma may have distinctive cellular and molecular features.Methods30 patients with typical or classical asthma (CA), 27 patients with CVA, 30 patients with CTVA, and 30 healthy control adults were enrolled in this prospective study. We measured serum IgE, lung function, sputum eosinophils, nitric oxide in exhaled breath (FeNO). We performed proteomic analysis of induced-sputum supernatants by mass spectrometry.ResultsThere were no significant differences in atopy and FEV1 among patients with CA, CVA, and CTVA. Serum IgE, sputum eosinophil percentages, FeNO, anxiety and depression scores were significantly increased in the three presentations of asthmatic patients as compared with healthy controls but there was no difference between the asthmatic groups. Comprehensive mass spectrometric analysis revealed more than a thousand proteins in the sputum from patients with CA, CVA, and CTVA, among which 23 secreted proteins were higher in patients than that in controls.ConclusionsPatients with CA, CVA, or CTVA share common clinical characteristics of eosinophilic airway inflammation. And more importantly, their sputum samples were composed with common factors with minor distinctions. These findings support the concept that these three different presentations of asthma have similar pathogenetic mechanism in terms of an enhanced Th2 associated with eosinophilia. In addition, this study identified a pool of novel biomarkers for diagnosis of asthma and to label its subtypes. Trial registration http://www.chictr.org.cn (ChiCTR-OOC-15006221)Electronic supplementary materialThe online version of this article (doi:10.1186/s12967-017-1264-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.