The ecological stability of mining areas in Northwest China has been threatened by desertification for a long time. Remote sensing information combined with machine learning algorithms can effectively monitor and evaluate desertification. However, due to the fact that the geological environment of a mining area is easily affected by factors such as resource exploitation, it is challenging to accurately grasp the development process of desertification in a mining area. In order to better play the role of remote sensing technology and machine learning algorithms in the monitoring of desertification in mining areas, based on Landsat images, we used a variety of machine learning algorithms and feature combinations to monitor desertification in Ningdong coal base. The performance of each monitoring model was evaluated by various performance indexes. Then, the optimal monitoring model was selected to extract the long-time desertification information of the base, and the spatial-temporal characteristics of desertification were discussed in many aspects. Finally, the factors driving desertification change were quantitatively studied. The results showed that random forest with the best feature combination had better recognition performance than other monitoring models. Its accuracy was 87.2%, kappa was 0.825, Macro-F1 was 0.851, and AUC was 0.961. In 2003–2017, desertification land in Ningdong increased first and then slowly improved. In 2021, the desertification situation deteriorated. The driving force analysis showed that human economic activities such as coal mining have become the dominant factor in controlling the change of desert in Ningdong coal base, and the change of rainfall plays an auxiliary role. The study comprehensively analyzed the spatial-temporal characteristics and driving factors of desertification in Ningdong coal base. It can provide a scientific basis for combating desertification and for the construction of green mines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.