While earlier studies reported no relevant effect of the HeartMate 3 (HM3) artificial pulse (AP) on bulk pump washout, its effect on regions with prolonged residence times remains unexplored. Using numerical simulations, we compared pump washout in the HM3 with and without AP with a focus on the clearance of the last 5% of the pump volume. Results were examined in terms of flush-volume (Vf, number of times the pump was flushed with new blood) to probe the effect of the AP independent of changing flow rate. Irrespective of the flow condition, the HM3 washout scaled linearly with flush volume up to 70% washout and slowed down for the last 30%. Flush volumes needed to washout 95% of the pump were comparable with and without the AP (1.3–1.4 Vf), while 99% washout required 2.1–2.2 Vf with the AP vs. 2.5 Vf without the AP. The AP enhanced washout of the bend relief and near-wall regions. It also transiently shifted or eliminated stagnation regions and led to rapid wall shear stress fluctuations below the rotor and in the secondary flow path. Our results suggest potential benefits of the AP for clearance of fluid regions that might elicit in-pump thrombosis and provide possible mechanistic rationale behind clinical data showing very low rate of in-pump thrombosis with the HM3. Further optimization of the AP sequence is warranted to balance washout efficacy while limiting blood damage.
Introduction: The miniaturization of blood pumps has become a trend due to the advantage of easier transplantation, especially for pediatric patients. In small-scale pumps, it is much easier and more cost-efficient to manufacture the impeller with straight blades compared to spiral-profile blades. Methods: Straight-blade impeller designs with different blade angles, blade numbers, and impeller flow passage positions are evaluated using the computational fluid dynamics method. Blade angles (θ = 0°, 20°, 30°, and 40°), blade numbers ( N = 5, 6, 7, and 8), and three positions of impeller flow passage (referred to as top, middle, and bottom) are selected as the studied parametric values. Results: The numerical results reveal that with increasing blade angle, the pressure head and the hydraulic efficiency increase, and the average scalar shear stress and the normalized index of hemolysis decrease. The minimum radial force and axial thrust are obtained when θ equals 20°. In addition, the minimum average scalar shear stress and normalized index of hemolysis values are obtained when N = 6, and the maximum values are obtained when N = 5. Regarding the impeller flow passage position, the axial thrust and the stagnation area forming in the impeller eye are reduced as the flow passage height declines. Conclusion: The consideration of a blade angle can greatly improve the performance of blood pumps, although the influence of the blade number is not very easily determined. The bottom position of the impeller flow passage is the best design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.