The apparent contact angle of Cassie-Baxter state water droplets can be calculated by the existing theoretical formula, but due to the defects of the micro-structured hydrophobic surface and some inevitable tiny disturbances in the experiment, Cassie-Baxter state water droplets will appear partly in Wenzel state, that is, the mixed state water droplets. In this paper, apparent contact angles of Cassie-Baxter state and mixed state water droplets on micro-structured hydrophobic surfaces are compared. The research shows that if the projected area fraction of water-solid F in the Cassie-Baxter formula is replaced by the local projected area fraction of water-solid F′, the apparent contact angles of water droplets in both Cassie-Baxter state and the mixed state can be calculated. Further experimental results indicate that the contact state of water droplets nearby the outermost three-phase contact line plays a more important role in determining the apparent contact angle. This conclusion is significant to the understanding of the apparent contact angle and wetting property. apparent contact angle, three-phase contact line, mixed model, Cassie-Baxter model, Wenzel model
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.